School: Computer Sciences and Engineering	Programme: BCA IILP			
Course Code: TXCA201	Ye	Year: First Year		Semester - II
Course: Object oriented Programming Using	L	Т	Р	С
C++	3	1		4
Theory: 3 Hrs/Week	Max. University Theory Examination: 50			
	Marks			
Max. Time for Theory Exam.: 3 Hrs	Continuous Internal Assessment: 50 Marks			

Objectives	
1	To understand how C++ improves C with object-oriented features.
2	To learn the syntax and semantics of the C++ programming language.
3	To understand the concept of data abstraction and encapsulation and to learn
	how to overload functions and operators in C++.
4	To learn how containment and inheritance promote code reuse in C++ and how
	inheritance and virtual functions implement dynamic binding with
	polymorphism.
5	To design and implement generic classes with C++ templates and to learn how
	to use exception handling in C++ programs.

Course Ou	itcomes
On succes	sful completion of the course students will be able to:
1	Understand and Apply Object oriented features and C++ concepts
2	Apply the concept of polymorphism and inheritance
3	Implement exception handling and templates.
4	Develop applications using Console I/O and File I/O.

Unit	Details	Hours
Number		
	Object Oriented Methodology: Elements of Object Oriented	
1	programming, Objects, Classes, OOPs features.	
	Classes & Objects: Specifying a Class, Creating Objects, Accessing	
	Class members, Defining member function, Outside Member	10
	Functions as inline, Accessing Member Functions within the class,	
	Static data member, Access Specifiers: Private, Protected and Public	
	Members.	
	Function, Constructors & Destructors: Introduction to functions,	
2	Parameters passing to functions, function overloading. Introduction to	
	Constructor, Parameterized Constructors, Constructor Overloading,	8
	Constructors with Default Arguments, Copy Constructor, Destructor,	
	Order of Construction and Destruction, Static data members with	

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

Constructor and Destructors.		
Operator Overloading: Definition, Overloadable Operators, Unary		
3 Operator Overloading, Unary & Binary overloading, Rules for		
Operators Overloading.	10	
Inheritance: Defining, Abstract classes, Single, Multilevel, Multiple,	10	
Hierarchical, Hybrid Inheritance, Constructor and Destructor in		
Derived Classes.		
Polymorphism: Definition, Application and demonstration of Data		
4 Abstraction, Encapsulation and Polymorphism. Early Binding,	10	
Polymorphism with pointers, Virtual Functions, Late binding, pure	10	
virtual functions, abstract classes		
Exception Handling: Exception Handling Model, List of Exceptions,		
5 Handling Uncaught Exceptions, Fault Tolerant Design Techniques,	7	
Memory Allocation Failure Exception, Rules for Handling Exception	/	
Successfully.		
Total	45	

Resources	
Recommended Books	1. Object Oriented Programming with C++ by E. Balagurusamy,
	McGraw Hill
	2. Mastering C++ by K R Venugopal Tata McGraw-Hill, New
	Delhi.
	3. Herbert Schild, "Complete Reference of C++", McGraw Hill
Reference Books	1. The C++ Programming Language –Bjarne Stroustrup
	2. Programming with C++ - Ravichandran
	3. Programming with C++ - Robert Lafore

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences and Engineering	Programm	e: BCA IILP		
Year : First Year	Semester –	II		
Course: Digital Electronics	Course Code: TXCA202			
	L	Т	Р	С
	3	1	2	5
Theory: 3 Hrs/Week	Max. University Theory Examination:50 Marks			
Max. Time for Theory Exam.: 3 Hrs	Continuous Internal Assessment: 50 Marks			

Objectives	
1	To study and understand the Number System and their conversion.
2	To learn Data Representation and Binary Arithmetic.
3	To study and analyze various logic gates and their properties.
4	To Study and apply Boolean Algebra for logical expressions.
5	To study and demonstrate K-Map.

Course Ou	ıtcomes
On succes	ssful completion of the course students will be able to:
1	Understand different Number systems, Codes, Logic Gates, Boolean laws & theorems.
2	Design & implement different types of combinational logic circuits using Logic gates.
3	Design & implement different types of sequential logic circuits using Flip Flops
4	Design & implement different types of Counters, a, c, k Registers, and Programmable
	Logic Devices

Unit	Details	Hours
Number		
	Number System: Binary, Octal, Decimal and Hexadecimal number	10
1	system and their inter conversion.	
	Binary Codes: BCD, Excess3 , Parity, Gray, ASCII, EBCDIC codes	
	and their advantages and disadvantages.	
	Data Representation: Positive, negative, maximum and minimum	10
2	number representation (related to 8 bit number), real number	
	representation, underflow, overflow, range and accuracy. Binary	
	Arithmetic: Binary addition, binary subtraction using 1's and 2's	
	compliment.	
	Logic gates: Truth table, properties and symbolic representation of	8
3	NOT, AND, OR, NOR, NAND, EXOR, EXNOR gates. NOR and	
	NAND gates as a universal gates.	
	Boolean Algebra: Laws and Identities of Boolean algebra,	8
4	DeMorgan's Theorem , use of Boolean Algebra for simplification of	

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

	logic expression,		
	K-Map: K-Map f	for 2, 3, 4 variables, simplification of SOP and POS	9
5	5 logic expression using K-Map.		
		Total	45
Resource	es		
Recomm	ended Books	1. Digital Electronics by Gothman(PHI)	
	2. Digital and analogue technique by Navaneeth, Kale and Gokh		
	3. Modern Digital Electronics by R. P. Jain		
Reference	Reference Books1. Digital Design, M.M. Mano, Pearson Education Asia, 1979		

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences and Engineering	Programme: BCA IILP			
Course Code: TXCA203	Year: First Year Semester – II			
Course: Data Structures using C++	L T P (
	3		2	4
Theory: 3 Hrs/Week	Max. University Theory Examination: 50			
	Marks			
Max. Time for Theory Exam: 3 Hrs	Continuous Internal Assessment: 50			
	Mark	S		

Object	tives
1	To understand different methods of organizing large amounts of data.
2	To efficiently implement linear data structures.
3	To comprehend the concept of linked list and its different types
4	To understand the data structures like stack and queues for storing data.
5	To figure the difference between the concept of trees and graphs when used as data
	structures.

Outco	mes
	On completion of this course, student should be able to:
1	Design and analyze the time and space efficiency of the data structure.
2	Identity the appropriate data structure for given problem.
3	Understand the applications of data structures.
4	Choose the appropriate data structure and algorithm design method for a specified
	application.
5	Understand which algorithm or data structure to use in different scenarios.
6	Understand and apply fundamental algorithmic problems including Tree traversals, Graph
	traversals.
7	Compare different implementations of data structures and to recognize the advantages
	and disadvantages of them.

Unit Number	Details	
1	Basic Concept and Introduction to Data Structure: Pointers and dynamic memory allocation: Algorithm-Definition and characteristics, Algorithm Analysis; Space Complexity; Time Complexity; Asymptotic Notation; Introduction to Data structure: Types of Data structure; Abstract Data Types (ADT);	10
2	Linear Data Structure: Introduction to Arrays and Structure: Types of array and Representation of array , Searching and Sorting Techniques :Linear Search, Binary Search Bubble Sort, Insertion Sort, Selection Sort, Merge Sort	8

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

3	Linked List: Introduction, ADT, Static & Dynamic Representation , Types of linked List: Singly Linked list(All type of operation) , Doubly Linked list (Create , Display), Circularly Singly Linked list (Create, Display), Application of Linked List	6
4	 Stack and Queue: Stack: Introduction stack, stack as ADT, array representation of stack, linked representation of stack, Static and Dynamic Representation, Primitive Operations on stack, Application of Stack, Evaluation of postfix and prefix expression, Conversion of expressions- Infix to prefix & Infix to postfix Queue : Introduction queue, queue as ADT, array representation of queue, linked representation of queue, Static and Dynamic Representation, Primitive Operations on Queue, Application of Queue, circular queue 	12
5	 Trees and Graphs: Trees: Introduction & Definitions, Terminology , Static and Dynamic Representation, Types of tree, Tree Traversal Inorder , Preorder, Postorder (Recursive & Iterative) Graphs: Basic Concepts and Terminologies, Representation, Adjacency Matrix, List, In degree , out degree of graph, Prim's and Kruskal's algorithms, Dijikstra's shortest path algorithm 	9
	Total	45

Resources	
Recommended	1. "Fundamental of data structure", EillsHorowita and satarjshani2
Books	 "Data structures Using C and C++", Rajesh K. Shukla ,wiley.India
	3. "Data structures Files and Algorithms", Abhay KAbhyankar.
	1. "Data structures and algorithms", Alfraid V Aho, John Ehopcroft,
	Jeffery DUllman.
Reference Books	
	"Data structures Using C++", Balagurus wamy OOP with C++
	Pearson Education,India.

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences and Engineering	Progran	ıme: <mark>BCA</mark>	IILP	
Course Code: TXCA203	Year : I	First Year	· Semester	- II
Course: Lab Course based on DS	L	Т	Р	С
Using C++			2	1
Practical: UG - 4 Hrs/Batch (20	Practical Examination: 25 Marks			
Students)	Formative CIA/Term Work :25 Marks			

Obj	Objectives		
1	To demonstrate various sorting algorithms using C++.		
2	To demonstrate the use of various data structures.		

Set of Suggested assignment list is provided in 3 groups – A, B, C.
Instructor is suggested to design assignment list by selecting/ designing at least 12 suitable assignments as a study assignments.
1.At least 6 assignments from group A.

2.At least 4 assignments from group B.

3.At least 2 assignments from group C.

Sr.	Description			
No.				
	Group A: Programs on Data Structure (Any SIX Assignments)			
1	WAP to implement linear search to find an item in the list.			
2	WAP to implement binary search to find an element in an ordered list.			
3	WAP to sort given elements using a bubble sort algorithm			
4	WAP to sort given elements using a insertion sort algorithm			
5	WAP to sort given elements using a merge sort algorithm			
6	WAP to sort given elements using a quick sort algorithm			
7	WAP to implement various set operations on a given set of elements			
	Group B: (Any Four Assignments)			
8	WAP to implement a stack and perform various operations like push, pop, display			
9	WAP to implement a queue and perform various operations on the queue			
10	WAP to implement a linked list and perform various operations on the linked list			

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

11	WAP to Convert a Decimal Number to Binary Number using Stacks.
12	WAP of STACK implementation using Linked List.
	Group C: (Any Two Assignments)
13	WAP to construct a binary tree, and perform different traversal operations on the same.
14	Write recursive programs to implement factorial, Fibonacci series or Tower of Hanoi.
15	Implement Prim's and Kruskal Algorithm.

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by subject teacher of the

institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Note	Notes:		
1	The experiments from the regular practical syllabus will be performed (15 Marks).		
2	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly (5 Marks).		
3	Good Laboratory Practices (5 Marks)		

Practical/Oral/Presentation:

Practical shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences & Engineering	Programme: BCA IILP			
Course Code: TXCA202	Year: First	Year	Semester - II	
Course: Lab Course based on Digital Electronics	L	т	Р	С
			2	1
Practical: UG - 4 Hrs/Batch (20 Students)	Practical Ex	kamination: 50) Marks	
	Formative	CIA/Term Wo	rk: 50 Marks	

Object	ives
	On completion of this course, student should be able to:
1	Understand various digital devices and circuits.
2	Understand the basics of Microprocessor.
3	Develop and execute assembly language programs for microprocessor.

Sr. No.	Description
	Group A: Python Programming (Any SIX Assignments)
1	Verify the truth table of logic gates
2	Design and verify the truth table of half and full adder.
3	Verify the working of 4 bit left shift register
4	Develop and execute an ALP for basic arithmetic operations on 16 bit Nos.
5	Develop and execute an ALP for 8086 to arrange five 16 bit numbers in ascending / descending order.
6	Check the truth table of basic gates using universal gates.
7	Verify De-Morgan's theorem using digital ICs.
	Group B: (Any Three Assignments)

Document Ref.	Rev. No./ Date	Issue No./ Date	Prepared by	Approved by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

8	Implement combinational circuit using Multiplexer.
9	Construct S-R, J-K, D and T flip flops using gates.
10	Develop and execute an ALP for 8086 to perform logical operations on 16 bit Nos.
11	Develop and execute an ALP to add sum of series of 16 bit numbers.
12	Develop and execute an ALP to add two 8 bit BCD numbers.
	Group C: (Any One Assignments)
13	Design a 4 bit up counter using flip-flops.
14	Design a MOD-10 counter using flip-flops.

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by subject teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Note	25:
1	The experiments from the regular practical syllabus will be performed (15 Marks).
2	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly (5 Marks).
3	Good Laboratory Practices (5 Marks)

Practical/Oral/Presentation:

Practical shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

Note	es
1	One experiment from the regular practical syllabus will be conducted. (Total 15 Marks).
2	Complete laboratory journal (05 Marks).
3	Viva-voce (05 Marks).

Document Ref.	Rev. No./ Date	Issue No./ Date	Prepared by	Approved by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences and Engineering	Programme: BCA IILP			
Course Code: TXCA205	Year: First Year			Semester - II
Course: Internet Technology	L	Т	Р	С
	3	1		4
Theory: 3 Hrs/Week	Max. University Theory Examination: 50			
	Marks			
Max. Time for Theory Exam.: 3 Hrs	Continuous Internal Assessment: 50 Marks			

Objectives	
1	To study the evolution of Internet, Email and various protocols.
2	To understand the HTML concept and apply it to design simple web pages
3	To learn Advanced HTML and its features along with its properties
4	To analyze PHP concept along with its data types and control structures
5	To study and implement HTML form with PHP and File handling

Course Outcomes				
On succes	ssful completion of the course students will be able to:			
1	Understand the basics of internet.			
2	Be able to create web pages in HTML and make web applications			
3	Be able to comprehend advanced concepts of HTML.			
4	To implement HTML and PHP and design web applications			

Unit	Details	Hours
Number		
1	Internet : History and evolution of Internet .Internet &intranet ,Basic concept of www , HTTP, FTP, URL, domain name, IP address, web browser, web server, web page, web site, Portals, email, Usenet, telnet,. Searching, downloading, uploading, files on internet ,Search Engines, Internet Protocol :TCP/IP, dialup access, direct access, three levels of Internet connectivity. ISPs, Introduction to DNS, Web Browser Architecture	10
2	Introduction to HTML – Introduction ,History, Structure, Elements of an HTML Document: Text Elements, Tag Elements., Paragraphs, Image tags, HTML Table tags, Lists: Numbered and non-numbered list, Hyperlinks, Buttons, Formatting: Text fonts and styles, Background color, Marquee., Forms related tags (action, method,	9

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

	name, input, submit etc)	
3	Advance HTML: List - Creating Table - Linking document Frames - Graphics to HTML Doc - Style sheet - Style sheet basic - Add style to document - Creating Style sheet rules - Style sheet properties - Font - Text - List - Color and background color - Box - Display properties.	8
4	JavaScript: Introduction to JavaScript, Basic Syntax. Control Structures. Writing Functions. Working with Arrays. The Document Object Model. Events Handling. Using Browser Objects. Object Oriented in JavaScript.	11
5	Introduction to AJAX: AJAX, RIA & WEB 2.0. The XMLHTTPRequest Object. Using AJAX in Web Applications.	7
	Total	45

Resources						
Recommended Books	1. Teach Your Self Internet In 24 Hours : Techmedia.					
	2. HTML Black Book: Steven Holzer					
	3. Ivan Bay Ross- Web Enable Commercial Application Using					
	HTML, DHTML, BPB Publication					
	4. Internet Programming with VBScript and Java Script.					
	Kathhleen Kalata, (Thomson Publication)					
	5. Thomos Pawell, "JavaScript Complete Reference", McGraw					
	Hill					
	6. Web Technologies HTML, Javascript, PHP, Java,					
	JSP,ASP.NET, XML and AJAX Black Book, Dreamtech					
	Press					
Reference Books	1. Internet Complete: BPB Publication.					
	2. Adam Trachtenberg and David Sklar,"PHP Cookbook",					
	O'Reilly Media					

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

School: Computer Sciences & Engineering	Programme: BCA IILP			
Course Code: TXCA206	Year	: First Ye	ar Semester	- II
Course: Computer Fundamental	L	Т	Р	С
	3			3
Theory: 3Hrs/Week	Max. University Theory Examination: 50			
	Marks			
Max. Time for Theory Exam.: 3 Hrs	Continuous Internal Assessment:50 Marks			

Course Objectives

1	To define & understand the basics of computer system.
2	To determine the meaning & functions of computer hardware components
3	To understand the concept and the need of primary and secondary memory
4	To study various input and output units and their purposes

Course Outcomes			
_			
On succes	ssful completion of the course students will be able to:		
1	Understand the meaning and basic components of a computer system		
2	Explain and identify different computing machines during the evolution of computer		
	system and their generations.		
3	Identify and discuss the functional units of a computer system		
4	Identify the various input and output units and explain their purposes		

Unit	Details	Hours
Number		
	Introduction to Computers, Need for Computer Literacy.	
	Computer: The Definition, Basic Anatomy of Computers,	
	Characteristics of Computers, Evolution of Computers, The	9
1	Computer Generations Function of a computer, Application of	
	computer, Solution of different problem using Computer	
	Basic Computer Organization, Introduction, Components of a	
2	Digital Computer. The Input Unit, The Output Unit, The Central	9
	Processing Unit, The Control Unit, The Main Memory Unit, Storage	
	Unit. Components of Computer , CPU, Memory Structure, ALU	
	Memory & Processor: Introduction, the Central Processing Unit,	
3	Registers, Instruction Sets, Program Interrupts, Different Types of	8
	Memory, Architecture of Memory/ Processor Speed Memory,	
	Memory Unit.	
	Secondary Storage Devices: Introductions, Need of Secondary	
4	Storage Devices, Characteristics of Secondary Storage Devices,	9
	Types of Storage Devices .Magnetic Tape Systems, Magnetic Disk,	
	Types of Disks, Optical Disk, Mass Storage Devices, Storage	
	Hierarchy.	
	Input and Output Devices Introductions, Input Devices, Data	

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		

5	Scanning Devices, Digitizer, Electronic Card Reader, Voice	10
	Recognition Devices. Vision Input System, Output Devices, Voice	
	Response System, Screen Image Projector.	
	Introduction to Computer Networks:	
	Computer communication, communication components, computer	
	network, Network Topologies, Protocols, Introduction to internet- IP	
	address, MAC Address.	
	Total	45

Resources		
Recommended Books 1. Computer Fundamental – V. Rajaraman		
	2. Introduction to Computer Fundamentals – P K. Sinha (BPB)	
	1. Intel Microprocessor Hand book (or PDF File from	
Reference Books	www.microsoft.com)	
	2. Computer Organization by Tannenbaum	

Document Ref.	Rev. No./	Issue No./	Prepared	Approved
	Date	Date	by	by
SUN/SOCSE/ BCA IILP/SEM II /2019	20/08/2019	28/11/2019		