

1.

Courses of Study

2019-20 Diploma in Mechanical Engineering IILP

Diplo	on	na (Pa	art T	ìme) M	ech	anic	al	Engi	inee	ring	g 20	18-	19																					
Semester				Course I				Course II				Course III				Course IV				Course V				Course VI				Course VII	Course VIII	L	т	Ρ	С		ontact Hours
																						Сс	ode			Со	de		Code						ŭ
		LT	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С							
		4 1	0	5	3	0	4	5	3	1	2	5	2	0	4	4	2	0	2	3	0	0	0	0	0	0	0	0							
			BS			F	РС			I	ES			Р	С			HS	SS											14	2	12	22	28	
		Applied Matherr	naics		Eng Dra	inee wing	ring		Apj Me	plied chani	cs		Me Wo	chanic rksho	cal Er p	ıgg.	Con Skil	nmun ls	icatio	n															
																										Со	de		Code						
		L T	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С							
		2 0	2	3	3	1	2	5	3	0	2	4	3	0	2	4	2	0	2	3	0	0	0	0	0	0	0	0							
Π			BS			F	С			F	C			Р	С			HS	SS											13	1	10	19	24	
		Basic E Electror	lectric nics	al &	Eng	g. M	etrolo	gy	Ad Ma Pro	vance nufac cesse	d turing ss	5	Me Me	chanic asurer	cal Er nents	ıgg.	Tecl Con	hnical nmun	l icatio	n												-			

Diplo	oma	. (Pa	rt 7	Гime	e) M	lech	nani	cal	Eng	ine	ering	g 20)18-	19																								
Semester				Course I				Course II				Course III				Course IV				Course V				Course VI				Course VII				Course VIII	L	т	Ρ	С		ontact Hours
		1	r —	1		1	1					1			1					1		Сс	de			Со	de			Со	de							Ŭ
	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С						
	3	0	2	4	3	0	2	4	3	0	2	4	3	0	2	4	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0						
Ξ		Р	Ċ			Р	РС			I	РС			Р	С			PV	VSI			•											12	0	8	19	20	
	Flu	id Me	chan	ics		Stren Mate	igth of erials	f	The Eng	ermal gineer	ing		The Mao	ory o chines	f s		Inte	ernshi	рI																			
																										Со	de			Со	de							
	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С						
~	3	0	2	4	3	0	2	4	3	0	2	4	2	0	2	3	0	0	8	4	0	0	0	0	0	0	0		0	0	0	0						
		Р	C			P	С			F	РС	•		Р	С			PV	VSI			•											11	0	16	19	27	
	Pov Ref	ver Eı rigera	ngg. ation	&	Ele: Ma	ments	s of Desig	gn	Me Ma	chani terial	cal Er s	ngg.	Cor Dra	npute fting	r Aid	ed	Sen	ninar																				

Diplo	oma	ı (Pa	art [Гim	e) l	Mech	nanic	alE	ngine	erin	ng 20	018	-19																									
Semester				Course I				μ	Course II			Course III				Course IV				Course V				Course VI				Course VII				Course VIII	L	т	Ρ	С		ontact Hours
																										Со	de			С	ode							ŭ
	L	Т	Р	С	L	L T	Р	C	L	Т	Р	С	L	Т	Р	C	L	T	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С						
	3	0	0	3	0	0	24	12	2 0	0	0	4	2	0	0	2	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0						
		Р	C				PC			Р	С			В	S			PW	/SI			PW	SI										5	0	24	21	29	
	DE	I			Pı	roject d	& Viva	Voce	e Inte	ernshij	p II		Env Stuc	ironn lies	nenta	1																						

Department	Elective I				
	Mechanical Engineering				
Course					
Code	Course	L	Т	Ρ	С
1	Production Technology & Management	3	0	0	3
2	Industrial Safety & Ethics	3	0	0	3
3	Automobile Engineering	3	0	0	3

Industry Integrated Learning Program

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Cou	irse	DTM	IE101	Applied I	Aathemat	tics								
Yea	r	First		Semester	Ι]	Prerequisite	XXX				
Те	achi	ng Sch	eme	Continu	ous Interi	nal Assess	ment	End Ser	mester	Total				
	(1115	vveer	x)		(CIA	A)		Еханн		Marks				
L	L T P C CIA-1 CIA-2 CIA-3 LAB Theory Lab 4 1 0 5 20 20 10 - 50 - 100													
4	I 0 5 20 20 10 - 50 - 100 Max_Time_End Semester Exem (Theory) - 3Hrs - 100													
	Max. Time, End Semester Exam (Theory) -3Hrs.													
Cou	irse	Object	tives											
	1. S	olve si	imultan	eous equation	ons in thre	e variable	s using (Cramer's rule						
	2. F	ind pa	rtial fra	ction of pro	per and in	nproper fra	action.							
	3. C	Derive	factoriz	ation and de	e-factoriza	tion form	ulae to so	olve examples						
	4. \$	Solve p	oroblen	ns with give	n conditio	n.								
	5. S	olve e	xample	s of inverse	trigonome	etric ratios	5.							

Course	e Content		
Unit No.	Modul e No.	Content	Hour s
1	Ι	Algebra -Definition of a matrix of order m x n and types of matrices, Algebra of matrices with properties and examples, Transpose of a matrix with properties, Cofactor of an element of a matrix, Adjoint of matrix and inverse of matrix by adjoint method.	10

 ${}^{\rm Page}{\sf S}$

.....

2	I	 Partial Fraction -Definition of fraction, proper, improper fraction and partial fraction, Resolve proper fractions into partial fraction with denominator containing i) non repeated linear factors, ii) repeated linear factors, iii) non repeated quadratic irreducible factors. 	10
3	Ι	Factorization and De-factorization Formulae- Formulae for factorization and de-factorization with proof and examples.	8
4	Ι	Straight Line- Angle between two lines with proof. Examples, Condition of parallel and perpendicular lines, Point of intersection of two lines, equation of line passing through point of intersection with given condition. Perpendicular distance between point and line with proof and examples.	10
5	Ι	Inverse Trigonometric Ratios- Definition of inverse trigonometric ratios. Principal value of inverse trigonometric ratios.Relation between inverse trigonometric ratios with proof and examples.	10
		Total No. of Hrs	48

Course (Dutcome
Students	should able to
CO1	Students should able to apply the concepts of algebra to solve engineering related problems.
CO2	Students should able to utilize basic concepts of trigonometry to solve elementary engineering problem.
CO3	Students should able to solve the basic engineering problems under given conditions of straight lines.
CO4	Students should able to use basic concepts of statistics to solve engineering related problems.

Recommended Reso	ources
Text Books	Applied Mathematics (Author: <u>D</u> r. N. S. Chavan)

Page 6

Reference Books 1	•	Mathematics for	Polytechnic	(Author: S.P.	Deshpande)
-------------------	---	-----------------	-------------	---------------	------------

- 2. Engineering Mathematics (Author: S. Ramamruthum)
- 3. Trigonometry (Author: S Rajasekaran)

E-Resources : www.khan Academy www.nptel.ac.in

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Cou	irse	DTM	E102	Engineeri	ng Drawii	ng								
Yea	r	First		Semester	Ι				Prerequisite	XXX				
Te	achi	ng Sch	ieme	Continu	ous Interi	nal Assess	ment	End Se	mester	Total				
	(Hrs	s/Weel	x)		(CIA	A)		Exami	nation	Marks				
L	L T P C CIA-1 CIA-2 CIA-3 Lab Work Theory OR/PR 3 0 4 5 20 20 10 25 50 25 150													
3	3 0 4 5 20 20 10 25 50 25 150													
	3 0 4 3 20 20 10 23 50 25 130 Max. Time, End Semester Exam (Theory) - 3Hrs. End Semester Exam (Lab) - 2Hr													
Cot	irse (Object	ives											
	1. U	se Inst	trument	s for drawin	ng, Scales,	Lines, &	there app	olications.						
	2. D	Praw C	onic cu	rves, involu	te, Cycloid	d & know	their app	olications						
	3. D	oraw he	elix, spi	iral, & loci o	of points fr	om given	data.							
	4. V	<i>'</i> isualiz	ze, inter	pret & draw	v orthograp	phic views	from give	ven pictorial v	view.					
	5. V	<i>'</i> isualiz	ze inter	pret & draw	isometric	view from	n given o	rthographic vi	iews					

Course	e Content		
Unit No.	Module No.	Content	Hour s
	Ι	Drawing Instruments and their uses - Standard sizes of drawing sheets (ISO-A series), Letters and numbers (single stroke vertical), Convention of lines and their applications, Scale (reduced, enlarged & full size),	
1			7
		Dimensioning technique- as per SP-46 (Latest edition) – types and	
	II	applications of chain, parallel and coordinate dimensioning.	6

 ${}^{\rm Page}8$

.....

	Ι	Conic Section - To draw an ellipse by Arcs of circle method & Concentric circles method. Rectangle method , Rectangular hyperbola (Inclined axes).	7
2	II	Engineering curves - To draw involutes of circle & pentagon, To draw a cycloid, Loci of points on any link of (i) 4 bar mechanism and (ii) Single slider crank mechanism with given specifications.	8
3	Ι	Introduction to Orthographic projections . Conversion of pictorial view into Orthographic Views (First Angle Projection Method Only) – elevation, plan and end view.	8
5	II	Sectional View- Selection of section planes and drawing sectional view (simple object).	8
		Isometric View-Isometric scale, comparison of true scale with isometric	8
4	Ι	scale, Conversion of orthographic views into isometric View / projection.	0
		Total No. of Hrs	52
	1		

Course (Dutcome
CO1	Students should able to draw different engineering curves and know their applications.
CO2	Students should able to draw orthographic projections of different objects.
CO3	Students should able to visualize three dimensional objects and draw Isometric Projections.
CO4	Students should able to draw simple geometrical figures.

 $_{\rm Page}9$

-

List of Experiments				
Sr. No.	Description			
1	One sheet on drawing Letters, different types of lines.			
2	One sheet on dimensional techniques.			
3	Drawing Sheet - 1: Engineering Curves (2 Examples) a. Ellipse (Rectangle method), b. Parabola (Rectangle method),			
4	Drawing Sheet – 4: Orthographic Projection (2 Examples)			
5	Drawing Sheet – 5: Sectional Orthographic Projections (2 Examples)			
6	Drawing Sheet – 6: Isometric Views & projections (2 Examples)			

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Notes			
1.	One experiment from the regular practical syllabus will be conducted. (Total 15 Marks).		
2.	Complete laboratory journal/records (05 Marks).		
3.	Viva-voce (05 Marks).		

Recommended Resources				
Text Books	Engineering Drawing (Author: <u>M.</u> W. Ingole)			
Reference Books	1. Engineering Drawing (Author: N. D. Bhatt)			
	2. Engineering Drawing (Author: Amar Pathak)			
	3. Engineering Drawing (Author: R. K. Dhawan)			
E-Resources :	Instructional / Learning CD developed by ARTADDICT.			
	www.nptel.ac.in			

 $_{Page}$ 11

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Course		TDM	E103	APPLIED	MECHA	NICS				
Year First		Semester	Ι	Prerequisite		XXX				
Teaching Scheme (Hrs/Week)			eme x)	Continuous Internal Assessment (CIA)			End Semester Examination		Total Marks	
L	Т	Р	С	CIA-1	CIA-2	CIA-3	Lab Work	Theory Lab		
3	1	2	5	20	20	10	25	50	-	125
	Max	. Tim	e, End	Semester E	Cxam (Th	eory) -3H	rs.		<u> </u>	
Cou	Course Objectives									
	1. C	alcula	te velo	city ratio for	given ma	achine.				
	2. F	ind Ef	ficiency	y of given n	nachine.					
	3. D	efine 1	related	terms in me	chanics.					
	2. Calculate Components of forces.									
	4. S	tate co	ndition	s of equilib	rium for g	given force	e system.			
	5. Calculate reactions of beams for different static loading.									
	6. Define terms related to friction, Apply conditions of equilibrium for forces acting on a body associated with friction					g on a body				
	7. Calculate centroid of composite plain figures, Calculate centre of gravity of composite solids.									

 $_{\rm Page} 12$

Course	e Content		
Unit No.	Modul e No.	Content	Hou rs
1	Ι	Definitions - Simple machine, compound machine, load, effort, mechanical advantage, velocity ratio, input of a machine, output of a machine efficiency of a machine, ideal machine. Law of machine, maximum mechanical advantage and maximum efficiency of a machine, reversibility of a machine, condition for reversibility of a machine, Simple numerical problems.	5
	II	Velocity Ratio for simple machines- Simple axle and wheel, differential axle and wheel, Weston's differential pulley block, single purchase crab, screw jack, calculation of mechanical advantage, efficiency, identification of type such as reversible or not etc.	5
	Ι	Fundamentals and Force systems- Definitions of mechanics, statics, dynamics, classification of force system according to plane coplanar and non-coplanar, sub classification of coplanar force system collinear, concurrent, non concurrent, parallel, like parallel, unlike parallel, general etc. Definition of a force, S.I. unit of a force, Characteristics of a force, effects of a force.	4
2	II	Resolution of a force and Moment of a force- Definition, Method of resolution, along mutually perpendicular direction. Definition of moment, S. I. unit, Simple problems on moment.	4
	III	Resultant of Force- Definition of Resultant force, methods of composition of forces, Algebraic method for determination of resultant for concurrent and non-concurrent, parallel coplanar force system. Space diagram, vector diagram, Resultant of concurrent force system only. Simple problems on graphical method.	5
3	Ι	Lami's Theorem- Analytical conditions of equilibrium for concurrent, non-concurrent and parallel force system, free body and free body diagram. Statement and explanation of Lami's theorem, Application of Lami's theorem for solving various engineering problems.	5
		Beams- Definition, Types of beams (cantilever, simply supported, overhanging, fixed, continuous), Types of end supports (simple support, hinged, roller), classification of loads, point load, inclined point load, uniformly distributed load. Analytical method to determine reactions of	5

	II	simply supported, cantilever and over hanging beam subjected to point loads and UDL.	
	Ι	Definition- Friction, coefficient of friction, angle of friction, angle of repose, Types of friction, advantages and disadvantages.	4
4	II	Equilibrium of body on Horizontal and inclined plane- Equilibrium of body on horizontal plane subjected to horizontal and inclined force. Equilibrium of body on inclined plane subjected to forces applied parallel to the plane only.	5
5	Ι	Centroid- Definition of centroid. Moment of an area about an axis. Centroid of basic geometrical figures such as square, rectangle, triangle, circle, semicircle and quarter circle. Centroid of composite figure with not more than two geometrical figures.	5
	II	Center of gravity- Definition, center of gravity of simple solids such as cylinder, sphere, hemisphere, cone, cube, and rectangular block.	5
		Total No. of Hrs	52

Course (Course Outcome			
Students	should able to			
CO1	Students should able to identify the force systems for given conditions by applying the basics of mechanics.			
CO2	Students should able to select the relevant simple lifting machine for given purpose.			
CO3	Students should able to determine unknown forces of different engineering systems.			
CO4	Students should able to check the stability of different force systems.			
CO5	Students should able to apply the principles of friction in various force systems.			
CO6	Students should able to find the centroid and centre of gravity of various components in engineering systems.			

 $_{\rm Page}14$

-

List of Experiments				
Sr. No.	Description			
1	Calculate velocity ratio, mechanical advantage, efficiency and obtain the law of machine for Differential wheel and axle.			
2	Calculate velocity ratio, mechanical advantage, efficiency and obtain the law of machine for single purchase crab.			
3	Calculate velocity ratio, mechanical advantage, efficiency and obtain the law of machine for screw jack.			
4	Calculate velocity ratio, mechanical advantage, efficiency and obtain the law of machine for Geared pulley block.			
5	Verify law of moments.			
6	Verify law of polygon of forces by using universal force table.			
7	Verify Lami's theorem by using universal force table.			
8	Solve problems on coplanar concurrent forces, parallel forces with the help of simply supported beam reaction apparatus.			

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Not	Notes			
4.	One experiment from the regular practical syllabus will be conducted. (Total 15 Marks).			
5.	Complete laboratory journal/records (05 Marks).			
6.	Viva-voce (05 Marks).			

Recommended Resources				
Text Books	Applied Mechanics (Author: M. M. Malhotra)			
Reference Books	 Engineering Mechanics (Author: R.S.Khurmi) Applied Mechanics (Author: S. Ramamruthum) Essentials of Engg. Mech. (Author: S Rajasekaran) 			
E-Resources :	http://www.asnu.com.au www.nptel.ac.in			

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Course DTME104		IE104	Mechanic	al Engine	ering Wo	rkshop	<u>-</u>			
Year First			Semester	Ι	Prerequisite		XXX			
Те	achi	ng Sch	neme	Continuous Internal Assessment			End Semester		Total	
(Hrs/Week)			x)	(CIA)				Examination		Marks
L	Т	Р	C	CIA-1	CIA-2	CIA-3	Lab work	Theory	OR/PR	
2	0	4	4	20	20	10	25	-	50	125
	End Semester Exam (Lab) - 2Hr									
Cou	irse	Object	tives							
	1. K	Know b	asic wo	orkshop pro	cesses.					
	2. F	Read ar	nd inter	pret job drav	wing.					
	3. Identify, select and use various marking, measuring, holding, striking and cutting tools & equipments									
	 Operate, control different machines and equipments, Inspect the job for specified dimensions 									
	5. F	roduce	e jobs a	s per specifi	ied dimens	sions				
	6. <i>A</i>	Adopt s	afety p	ractices whi	le workin	g on vario	us mach	ines.		

Course	Content		
Unit	Modul	Content	Hour
No.	e No.	Content	s
		Carpentry shop - Introduction, Various types of woods, Different types	
1	Ι	of tools, machines and accessories.	

Page 1

.....

			10
		Welding shop – Introduction, Types of welding, ARC welding, Gas	
		welding, Gas Cutting, Welding of dissimilar materials, Selection of	
	Ŧ	welding rod material Size of welding rod and work piece, Different types	0
	I	of flame, Elementary symbolic representation,	8
2	II	Welding Safety - Safety precautions in welding safety equipment's and	
-		its use in welding processes.	2
		Fitting chan Introduction Various marking massuring sutting holding	
		Fitting shop- introduction, various marking, measuring, cutting, nothing	
	Ι	and striking tools, Different fitting operation like chipping, filing, right	6
		angle, marking, drilling, tapping etc,	
2		Drilling - Working Principle of Drilling machine. Tapping dies its use.	
3	TT	Safety precautions and safety equipments	
	11	Salety productions and salety equipments.	4
		Plumbing shop- Introduction, Various marking, measuring, cutting,	
		holding and striking tools, Different G.I. pipes, PVC pipes, flexible pipes	
	-	used in practice, G. I. pipes and PVC pipes fittings and accessories,	10
	I	Adhesive solvents chemical action, Piping layout.	10
4			
		Sheet metal shop- Introduction, Various types of tools, equipments and	
-	т	accessories, Different types of operations in sheet metal shop. Soldering	10
5	1	and riveting safety precautions	10
		and freeding, survey productions.	
		Total No. of Hrs	50

Course (Dutcome
CO1	Students should able to Select tools and machinery according to job.
CO2	Students should able to Use hand tools in the different shops performing different operation.
CO3	Students should able to Operate equipment and machinery in different shops.
CO4	Students should able to Prepare the job according to drawing.

List of E	List of Experiments				
Sr. No.	Description				
1	One Fitting job involving following operations: filing to size, one simple male female joint, drilling and tapping.				
2	One carpentry job involving estimation of cost by students;				
	Ex. Notice Board, Door frame etc				
2	One welding job involving estimation of cost by students;				
3	Ex. Cots, benches, grills etc.				
4	One plumbing job with use of various types of joints, couplings, water taps etc.				

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	Notes			
1.	Each student should perform all the above experiments.			
2.	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly.			
3.	Students should undergo good laboratory practices.			

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Recommended Res	ources
Text Books	Applied Mathematics (Author: <u>D</u> r. N. S. Chavan)
Reference Books	 Workshop (Author: S. K. Hajara Chaudhary) Production Technology (Author : R K Jain) Workshop Technology (Author: B. S. Raghuwanshi)
E-Resources :	Learning Materials Transparencies, CBT Packages developed by N.I.T.T.E.R. Bhopal. <u>www.nptel.ac.in</u>

 $P_{age}20$

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Cou	irse	DTM	IE201	Basic Elec	ctrical &	Electroni	CS			
Year		First		Semester	II	Prerequisite			XXX	
Те	achi	ng Sch	eme	Continuous Internal Assessment				End Semester		Total
(Hrs/Week)			K)	(CIA)				Examination		Marks
L	Т	Р	С	CIA-1	CIA-2	CIA-3	Lab work	Theory	OR/PR	
2	0	2	3	20	20	10	25	50	-	125
Max. Time, End Semester Exam (Theory) -3Hrs.										
Cou	irse	Object	tives							
	1. Describe the electric power system and A. C. supply.									
	2. D	Define	and stat	the measu	aring instr	ruments				
3. Describe the fundamental of solid state devices										
4. Describe the Transistor and BJT circuit.										

Course Content							
Unit	Module	Content	Hours				
No.	No.						
1	Ι	Electric Power System and A. C. Supply Electrical power supply system generation, transmission, distribution. AC supply & DC Supply. Definitions: cycle, frequency, phase, period, maximum value, average value, r.m.s. value. Concept of current, voltage, power & energy in series R-L and R-C circuits. Star and Delta circuit, Line	10				

		and Phase relationship, power equation.	
2	Ι	Measuring Instruments, AC Motor, DC Motor and Transformer Introduction to construction, operation and use of AC and DC ammeter, voltmeter Electro-dynamic wattmeter, energy meter and digital multimeter. Speed-torque characteristics. D.C. shunt, series and compound motors. EMF equation and transformation ratio. Load test for efficiency and regulation. Specifications and rating. Auto transformer & 3 phase transformer concept only. Applications of transformers. Construction and principle of operation of 3 phase induction motor.	10
3	Ι	Fundamentals of solid state Devices Material classification conductors, semiconductors and insulators, Energy band diagram intrinsic and extrinsic semiconductors Solid state Devices schematic symbols, working principle and applications of Diode, Zener diode, BJT, FET,UJT, Photo-devices- LDR, Photo diode, Photo-transistor, LED, 7 segment display opto-coupler, LCD type and operation	10
	Ι	Transistor Working of NPN and PNP transistor, Configurations CB., CC and CE, Biasing circuits, concept of thermal runway, construction and use of heat sink	10
4	II	BJT Circuits BJT as an amplifier single stage amplifier, Multistage amplifier, RC coupled, direct coupled and transformer coupled amplifier, their frequency response and applications BJT as a switch	10
		Total No. of Hrs	50

Course Outcome

Students should able to

CO1	Use principles of electric and magnetic cicuits to solve engineering problems.
CO2	Determine voltage and current in A. C. Circuits.
CO3	Use relevant electronic components safely.
CO4	Use relevant electronic/electric protective devices safely.

List of E	List of Experiment				
Sr. No.	Description				
1	Find the performance of R-L series circuit with single phase A.C. supply and determine the				
1	current, power and power factor.				
2	Find the performance of R-C series circuit with single phase A.C. supply and determine the				
2	current, power and power factor.				
2	Verify the relationship between line and phase values of voltages and currents in three phase				
5	balanced star and delta connected load.				
4	Identify various passive components such as resistors, capacitors, inductors, switches,				
- T	transformers, breadboard and cables and write their specifications.				
5	Identify various active electronic components such as diode, BJT, FET, UJT, LED,				
3	Photodiode.				
6	Use of multimeter (analogue and digital) for current, voltage and resistance measurement				
	Testing of various electronics components.				
7	Measure frequency and voltage using CRO.				

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Page 2:

Not	Notes			
4.	Each student should perform all the above experiments.			
5.	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly.			
6.	Students should undergo good laboratory practices.			

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Recommended Resources

Reference Books

- 1. Basic electrical engineering (Mittal and Mittal)
- 2. Basic electronic and electrical engineering (Jegathesan .V)

Page 24

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Course		DTM	IE202	Engineein	g Metrol	ogy	gy			
Year		First		Semester	II		Prerequisite			XXX
Те	achi	ng Sch	neme	Continuous Internal Assessment				End Semester		Total
(Hrs/Week)			K)	(CIA)				Examiı	nation	Marks
L	Т	Р	C	CIA-1	CIA-2	CIA-3	Lab	Theory	OR/PR	
							work	·		
3	1	2	5	20	20	10	25	50	25	150
Max. Time, End Sem				ester Exan	ı (Theory	7) -3Hrs.		End Semes	ter Exam (I	Lab) - 2Hr
Cou	irse	Object	tives							
	1. D	Define :	and stat	te the basic	metrolog	y and cons	struction	and working	of compara	tor
	2. D	escrib	e const	ruction and	use differ	rent instru	ments fo	or linear meas	surements	
	3. V	Vrite c	onstruc	tion and use	e of differ	ent instru	ments fo	r angular mea	asurement.	
	4. Describe screw threads measurement and gear testing.									
	5. Describe different methods of measurement of surface finish									

Course	Course Content				
Unit	Module	Content	Hours		
No.	No.				
1	Ι	Metrology Basics Definition of metrology, objectives of metrology, Categories of metrology, Scientific metrology, Industrial metrology, Legal metrology, Need of inspection Precision, Accuracy, Sensitivity, Readability, Calibration, Traceability, Reproducibility, Sources of errors, Factors affecting accuracy, Selection of instrument, Precautions while using an instruments for getting higher precision and accuracy. Concept of least count of measuring instruments	8		

Page 2 L

ATTA

	II	Comparator Definition and introduction to line standard, end standard, Wavelength standard and their comparison, Slip gauge and its accessories. Definition, Requirement of good comparator, Classification, use of comparators, Working principle of comparators, Dial indicator, Sigma comparator	8
2	Ι	Angular Measurement Instruments for Angular Measurements, Working And Use of Universal Bevel Protractor, Sine Bar, Spirit Level, Principle of Working of Clinometers, Angle Gauges.	8
3	Ι	Screw thread Measurements ISO grade and fits of thread, Errors in threads, Pitch errors, Measurement of different elements such as major diameter, minor diameter, effective diameter, pitch for internal and external threads , Three wire method, Thread gauge, screw thread micrometer, Working principle of floating carriage micrometer.	8
	II	Gear Measurement & Testing Analytical and functional inspection, Measurement of tooth thickness by constant chord method, base tangent method, gear tooth vernier, Errors in gears such as backlash, run out, composite, concentricity, Parkinson gear tester	8
4	Ι	Measurement of Surface Finish Primary and secondary texture, Sampling length, Lay, direction of lay, Sources of lay and its significance, CLA, Ra, RMS values and their interpretation, Symbol for designating surface finish on drawing, Various techniques of qualitative analysis	6
	Π	Machine Tool Testing Parallelism, Straightness, Squareness, Coaxiallity, roundness, run out, alignment testing of machine tools such as lathe, milling machine and drilling machine as per IS standard procedure. Study of optical flat for flatness testing.	6
		Total No. of Hrs	52

Beyond the Syllabus

Course (Course Outcome					
Students	Students should able to					
CO1	Understand and calculate the least count of all basic measuring instruments.					
CO2	Select and use appropriate instrument/s for specific measurement.					
CO3	Understand the systems of limits, fits and tolerances and correlate with machine drawing and manufacturing processes.					
CO4	Understand the machine tool testing.					

List of B	List of Experiments				
Sr. No.	Description				
1	Measurement of various dimensions& dimensional parameters using instruments such as radius gauge, pitch screw gauge, filler gauge, vernier caliper, vernier height gauge, vernier depth gauge, dial type vernier caliper, micrometer, inside micrometer, tube micrometer.				
2	To set the Adjustable snap gauge GO end and NOGO end for a given dimensions using slip gauges.				
3	Inspection of given components using Dial Indicator as a mechanical comparator.				
4	To check the given component using high pressure Dial type pneumatic comparator.				
5	To find unknown angle of component using bevel protractor and verify the same using sine bar/ sine center and slip gauges.				
6	Measurement of screw thread elements by using screw thread micrometer, screw pitch gauge & their verification with the help of profile projector/tool maker's microscope.				
7	Measurement of gear tooth elements by using gear tooth vernier caliper and verification of gear tooth profile using profile projector.				

 ${}^{\rm Page}27$

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	Notes			
7.	Each student should perform all the above experiments.			
8.	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly.			
9.	Students should undergo good laboratory practices.			

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Recommended Resources

Reference Books

- **1.** Engineering Metrology (R. K. Jain)
- 2. Text Book of Metrology (M. Mahajan)

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Cou	irse	DTM	IE203	Advanced	Manufa	cturing P	cturing Processes			
Year First Semest			Semester	II		Prerequisite			XXX	
Teaching Scheme			neme	Continuo	ous Intern	nal Asses	sment	End Semester		Total
(Hrs/Week)			K)	(CIA)				Exami	nation	Marks
L	Т	Р	C	CIA-1	CIA-2	CIA-3	Lab work	Theory	OR/PR	
3	0	2	4	20	20	10	25	50	25	150
Max. Time, End Semester Exam (Theory) -3) -3Hrs. End Semester Exam (Lab) - 2Hr						
Cot	irse	Object	tives							
	1. E	Define	and stat	te use of sur	veys and	also it's	classifica	ation		
	2. D	Describ	e const	ruction and	use differ	rent instru	ments fo	or linear meas	surements	
	3. Write construction and use of different instruments for setting offsets and Calculate the area of field					ulate the				
	4. Describe construction and state use of prismatic compass.									
	5. Describe different methods of orientation of Plane Tabling									

Course Content						
Unit	Module	Content	Hours			
NO.	NO.					
1	Ι	Non Traditional Machining Need and importance, classification AJM, WJM, EDM, W-EDM - setup, working, process parameters, advantages, disadvantages and applications.PAM, LBM - setup, working, process parameters, advantages, disadvantages and applications.	8			

1112

 ${}^{\rm Page}29$

2	Ι	Introduction, advantages of CNC, open loop and closed loop control, axis identification, absolute & incremental coordinate system G codes and M codes, Fundamental part programming - simple lathe and milling programmes, Safety Procedures, Adaptive controls, Displays and indicators.	8
3	Ι	Introduction, classification of Broaching machines, basic parts of horizontal broaching machine & their functions, applications, advantages and limitations of Broaching machine, Capstan, turret lathe & automats, Planer and planomiller function of parts & operations. Boring Machines – types, tools and operations.	8
4	Ι	Milling: Introduction, classification ,basic parts of column & knee type milling machine & their functions, standard milling cutters, milling operations like plain milling, side milling, straddle milling, gang milling, face milling - slot milling, slitting. Up milling & down milling, cutting parameters.	5
	II	Gear Cutting: Introduction, gear manufacturing methods, universal dividing head & indexing methods, gear shaping & gear hobbing - setup, working, advantages, disadvantages, applications, Gear finishing methods-grinding, shaving, burnishing.	5
5	Ι	Grinding Machines Classification and working of grinding machine - surface, cylindrical, centre less, grinding wheel specifications, grinding wheel dressing & truing. Selection criteria for grinding wheel. Balancing of grinding wheels, safety precautions.	6
	II	Super Finishing Methods of surface finishing like honing, lapping, burnishing, polishing and buffing - setup, working, advantages, limitations and applications.	6
	III	Maintenance Need and importance of maintenance activity, Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records.	6
		Total No. of Hrs	52

Course (Course Outcome				
Students should able to					
CO1	Understand the working of Broaching Machine, Milling Machine, Gear Cutting machines.				
CO2	Understand the working of Grinding Machines, Surface finishing machines.				
CO3	Know the Operation and control of different CNC machine tools.				
CO4	Adopt safety practices while working on various machines.				
CO5	Work as a maintenance engineer.				

List of E	List of Experiments					
Sr. No.	Description					
1	Industrial visit to observe at least one nontraditional machining process and write a					
1	report individually on visit.					
2	One simple Job on CNC Lathe Machine and Verification on simulation software (One					
2	job /max. four students).					
3	One simple Job on CNC Milling Machine and Verification on simulation software (One					
5	job /max. four students).					
4	Industrial visit to observe Broaching machine, Boring machine, Planer machine and					
4	report on the same.					
5	One job of gear cutting (spur gear /helical gear) by using simple indexing method (max.					
5	four Students per job).					
6	One job containing surface grinding / cylindrical grinding operation. (max. four					
0	students per job).					

Lab Work:

Lab Work assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	tes
10.	Each student should perform all the above experiments.
11.	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly.
12.	Students should undergo good laboratory practices.

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Recommended Resources

Reference Books

- 1. Elements of workshop Technology-Volume II (S. K. Hajra Chaudary, Bose, Roy
- 2. Production Technology Volume- II (O. P. Khanna & Lal)
- 3. Nonconventional Machining (P.K.Mishra)

Department of Mechanical Engg

First Year IILP

Diploma in Mechanical Engineering

Course		DTM	IE204	Mechanical Engineering Measurem			ents			
Year		First		Semester	II		Prerequisite		XXX	
Teaching Scheme			neme	Continuous Internal Assessment				End Semester Examination		Total
(Hrs/Week)			x)	(CIA)						Marks
L	Т	Р	С	CIA-1	CIA-2	CIA-3	Lab work	Theory	Lab	
3	0	2	4	20	20	10	25	50	-	125
Max. Time, End Semester Exam (Theory) -3Hrs.										
Course Objectives										
	1. Define and state the static characteristics									
	2. L	Define a	and stat	te the dynan	nic charac	cteristics				
	3. L	Describ	e the d	lisplacemen	t and pres	ssure meas	surement	t		
	4. Describe the non electric method electric methods.									
	5. L	Describ	e the m	ethods of fl	low measu	urement.				

Course	e Content		
Unit	Module	Content	Hours
No.	No.		
1	Ι	Types of measurement, classification of instruments Static terms and characteristics- Range and Span, Accuracy and Precision, Reliability, Calibration, Hysteresis and Dead zone, Drift, Sensitivity, Threshold and Resolution, Repeatability and Deams dualibility. Linearity	7
		Reproducibility, Linearity.	

	II	 Dynamic characteristics- Speed of response, Fidelity and Dynamic errors, Overshoot. Measurement of error- Classification of errors, environmental errors, signal transmission errors, observation errors, operational errors. Transducers : Classification of transducers, active and passive, resistive, inductive, capacitive, piezo-resistive, thermo resistive 	6
2	Ι	Displacement Measurement Capacitive transducer, Potentiometer, LVDT, RVDT, Specification, selection & application of displacement transducer. Optical measurement scale and encoders	8
2	II	Pressure Measurement Low pressure gauges- McLeod Gauge, Thermal conductivity gauge, Ionization gauge, Thermocouple vacuum gauge, High Pressure gauge-Diaphragm, Bellows, Bourdon tube, Electrical resistance type, Photoelectric pressure transducers, piezoelectric type, Variable capacitor type	8
	Ι	Non-electrical methods - Bimetal , Liquid in glass thermometer and Pressure thermometer	6
3	II	Electrical methods - RTD, Platinum resistance thermometer, Thermistor, Thermoelectric methods - elements of thermocouple, Seebek series, law of Intermediate temperature, law of intermediate metals, thermo e.m.f. measurement. Pyrometers- radiation and optical	6
4	Ι	Flow Measurements Rota meter, Variable velocity meter Anemometer, Hot wire anemometer, Electromagnetic flow meter, Ultrasonic flow meter ,Turbine meter ,Vortex shedding flow meter	6
	II	Miscellaneous Measurement Hair hygrometer, Sling psychrometer, Tool Dynamometer, Eddy Current Dynamometer, Strain Gauge Transmission Dynamometer.	6
		Total No. of Hrs	52

Beyond the Syllabus

Course Outcome

Students	Students should able to		
CO1	Understand the principle of operation of an instrument.		
CO2	Appreciate the concept of calibration of an instrument		
CO3	Select Suitable measuring device for a particular application		
CO4	Identify different types of errors.		

List of Experiment			
Sr. No.	Description		
1	Study the specifications of measuring instruments/ devices.		
2	Understand the methods of measurements and instrument characteristics with demonstration of any one measuring device.		
3	Measure displacement by using inductive transducer (LVDT) and verify its characteristics.		
4	Measurement of temperature by using Thermocouple and verifying it by thermometer.		
5	Measurement of flow by using rotameter.		
6	Measurement of force & weight by using a load cell.		
7	Measure speed of rotating shaft by stroboscope/ magnetic/ inductive pick up.		
Lab Wo	rk:		
Lab Wor	rk assessment shall be conducted for the Project, Laboratory and Seminar. Lab work is us assessment based on work done, submission of work in the form of report/journal		

continuous assessment based on work done, submission of work in the form of report/journal, timely completion, attendance, and understanding. It should be assessed by corresponding course teacher. At the end of the semester, the final grade for a Lab Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	tes	
13.	Each student should perform all the above experiments.	
14.	The regular attendance of students during the syllabus practical course will be monitored and marks will be given accordingly.	
15.	Students should undergo good laboratory practices.	Ψ.
		Page

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by internal and external examiners. The performance in the Practical/Oral/Presentation examination shall be assessed by at least a pair of examiners appointed as examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Recommended Resources

Reference Books

- 1. Mechanical Measurements & Control (D. S. Kumar)
- 2. Mechanical & Industrial Measurements (R.K. Jain)

