

Courses of Study 2019-20 Msc Mathematics Engineering IILP

M.Sc	: (I	Part '	Гiп	e) (1	Mat	hem	atic	s) 2	2018	-19																							
Semester	Semester			Course l				Course II							Course IV					Lourse v				Course VI				L	т	Ρ	С		ontact Hours
																						С	ode										ö
	Ι	LT	P	C	L	Т	Р	C	L	Т	Р	C	L	Т	Р	С	L	Т	Р	C	L	Т	Р	С									
	2	4 0	0	4	4	0	0	4	3	1	0	4	3	1	0	4	4	0	0	4	0	0	2	1									
Ι		•	PC	•]	PC	•		ŀ	РС			Р	С			Ŭ	JC	•		ι	JC				•	18	2	2	21	22	
	A	Advanc Calculu	ed s		At	ostract	Alge	bra	Ord Dif Equ	linary feren 1atior	, tial 18		Nu	mber	Theor	у	C-3	Langu	iage		Pra Lan	ctica iguag	l in C ge-I										

M.Sc	(Part Time) (M	Iathematics) 2	018-19								
Semester	Course I	Course II	Course III	Course IV	Course V	Course VI		L	т	P C	ontact Hours
						Code					CC
	L T P C	L T P C	L T P C	L T P C	L T P C	L T P C					
	4 0 0 4	4 0 0 4	3 1 0 4	3 1 0 4	4 0 0 4	0 0 2 1					
Π	PC	PC	PC	PC	UC	UC		18	2	2 21	22
	Complex Analysis	Linear Algebra	Partial Differential Equations	Topology	Numerical Analysis	Practicalin C Language-II					

M.Sc	(P	art 7	lime	e) (N	/lath	nem	atic	s) 2	2018	3-19)																							
Semester	Semester					course II												Lourse v				Course VI					L	т	Ρ	С		ontact Hours		
																						С	ode											č
	L	, Τ	Р	С	L	Т	Р	C	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С										
_	4	0	0	4	3	1	0	4	3	1	0	4	3	1	0	4	4	0	0	4	0	0	2	1										
Ш		.]	PC			F	УC			F	Ċ			Р	С			U	C			1	UC						17	3	2	21	22	
	F A	unction nalysis	nal S		Op Res	eratio search	n 1		Gra	iph Tl	neory		Cor	mbina	torics		Dat	ta Stru	cture	es	Pra Stru	ctica ictur	l in E es	Data										

M.Sc	(Part Time) (N	Aathematics) 2	2018-19		-							-
Semester	Course I	Course II	Course III	Course IV	Course V			L	т	Ρ	С	ontact Hours
												S
	L T P C	L T P C	L T P C	L T P C	L T P C							
~	3 1 0 4	4 0 0 4	2 0 10 7	0 0 2 1	0 0 2 1							
N	PC	UC	PC	UC	UC			9	1	14	17	24
	Fluid Mechanics	Design and Analysis of Algorithms	Research Project	Practical in Design and Analysis of Algorithms	Practical in Scilab							
							Total	62	8	20	80	90

Department Elective	l					Department Elective	II				
Trans	portation Engineerir	ng				Water Resource	s and Environmental	Engine	eerir	ng	
Course Code	Course	L	т	Ρ	С	Course Code	Course	L	т	Ρ	С
1					3	1					3
2					3	2					3
3					3	3					3
						4					
						5					

Cou	se	TPM	۲ 101	Advanced	Calculus					
Year		First		Semester	I				Prerequisite	Calculus
Те	achin	g Sche	me	Continu	ious Intern	al Assessn	nent	End Ser	nester	Total
	(Hrs/	Week)			(CIA)		Examir	nation	Marks
L	Т	Ρ	С	CIA-1	CIA-2	LAB	Theory	Lab		
5	0	-	5	20	20	-	50	-	100	
	М	ax. Tin	ne, End	d Semester E	xam (Theo	ory) -3Hrs.				
								L		
Coui	rse Ob	jective	es							
	1. To	o study	y Rien	nann-Stieltj	es integral	[
	2. To	study	seque	nces and ser	ies of func	tions				
	3. To	o study	calcul	us of functio	ns of sever	al variable	S			
4	4. To	o study	Lebes	gue measure	e and meas	urable fun	ctions			
1	5. To	study	Lebes	gue integrati	on theory.					

Course	Content		
Unit	Module	Content	Hours
No.	No.		
1	Ι	Riemann-Stieltjes integral: Definition and existence of the integral,	10
		Properties of the integral, Integration and differentiation, Integration of	
		vector valued functions, Rectifiable curves.	
2	I	Sequences and series of functions: Uniform convergence, Uniform	10
		convergence and continuity, Uniform convergence and integration,	
		Uniform convergence and differentiation,	
	П	Equicontinuous families of functions, The Stone-Weierstrass theorem	4
3	I	Functions of several variables: Linear transformations, Differentiation,	12
		The contraction principle, The inverse function theorem, The implicit	
		function theorem, Determinants, Derivatives of higher order,	
		Differentiation of integrals.	
4	I	Lebesgue measure: Set functions, Construction of the Lebesgue	13
		measure, Measurable spaces, Measurable functions, Simple functions.	
5	I	Lebesgue integral: Integration, Comparison with the Riemann Integral,	13
		Integration of complex functions, Functions of class \mathcal{L}^2 .	

	Total No. of Hrs	52

Beyond the Syllabus: Manifold Theory

Course O	utcome
Students	should able to
CO1	Understand Riemann-Stieltjes integral and their properties
CO2	Learn and check the convergence of sequences and series of functions.
CO3	Gain knowledge of function of several variables.
CO4	Understand new notion of Lebesgue theory

Resources	
Recommended	1. Walter Rudin, Principles of Mathematical Analysis, 3 rd Edition, McGraw-Hill
Books	International Editions, Singapore (1976).
Reference Books	1. H. L. Royden, Real Analysis, Macmillan, New York (1988).
	2. A. W. Knapp, Basic Real Analysis, Birkhauser, Boston (2005).

Cou	se	TPM	102	Abstract Al	gebra								
Year		First		Semester	I				Prerequisite	Calculus			
Те	achin (Hrs/	g Sche Week)	me	Continu	ous Intern (CIA	ial Assessn)	nent	End Ser Examir	mester nation	Total Marks			
L	T P C CIA-1 CIA-2 CIA-3 LAB Theory Lab 0 E 20 10 E0 100												
5	5 0 - 5 20 20 10 - 50 - 100												
	Max. Time, End Semester Exam (Theory) -3Hrs.												
Coui	rse Ob	jective	es										
:	1. Tc	revise	group	os, cyclic grou	ips, permu	itation gro	ups, grou	ıp homomorph	nism				
	2. To	study	impor	tant theoren	ns like Lagi	range's the	orem, Sy	low theorem					
	3. To	revise	rings,	Ideals, Integ	ral Domaiı	ns, ring ho	momorpl	nism					
4	4. To	study	polyn	omial rings, I	rreducibili	ty, Tests fo	r irreduc	ibility in detail					
1	5. To	study	basic	concepts of f	ield								

Course	Content		
Unit	Module	Content	Hours
No.	No.		
1	I	Prerequisites: Group, subgroup, elementary results, cyclic groups, permutation groups, alternating groups, normal subgroups, group homomorphism, Isomorphism, automorphism	10
2	I	Cosets and Lagrange's theorem, orbits and stabilizer, class equation, external direct product, normal subgroups and factor groups,	6
	II	Internal direct product, finite abelian groups(fundamental theorem), Sylow theorems.	6
3	I	Prerequisites: Rings, Ideals, Integral Domains, ring homomorphism, Prime and Maximal Ideals	10
4	I	Polynomial rings, Irreducibility (Eisenstein's criterion), factorization of polynomials, PID, UFD, ED, polynomials over UFD	10
5	I	Introduction to Fields: Definition of field, Algebraic & transcendental elements, Extension field, the degree of field extension, finite	10

extension, algebraic extension, splitting field, properties of algebraic extension, definition of finite fields and elementary results	
Total No. of Hrs	52

Beyond the Syllabus: Galois theory

Students	Students should able to				
CO1	Understand basic knowledge of groups and their properties.				
CO2	Understand basic knowledge of ring and their properties.				
CO3	Understand basic knowledge of field and their properties				
CO4	Learn the concept of homomorphism and isomorphism of group and ring				

Resources	
Recommended Books	 P.B.Bhattacharya, S.K.Jain,S.R.Nagpaul, Basic Abstract Algebra , Second Edition- Cambridge Publication Joseph A. Gallian , Contemporary Abstract Algebra , Fourth Edition- Narosa Publication
Reference Books	 I.N.Herstein, Topics In Algebra, Second Edition, Wiley Publication2. David S. Dummit, Richard M. Foote, Abstract Algebra, Third Edition-Wiley Publication I.S.Luthar, I.B.S. Passi, Algebra-Volume 1 and 2, Narosa Publication

Course TPMT-103		Ordinary D	rdinary Differential Equation							
Year First		Semester	I	Prerequisite			Calculus			
Те	achin	g Sche	me	Continuous Internal Assessment				End Semester		Total
(Hrs/Week)					(CIA)			Examination		Marks
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory	Lab	
4	1	-	5	20	20	10	-	50	-	100
Max. Time, En			ne, Enc	l Semester E	xam (Theo	ory) -3Hrs.				
Cou	Course Objectives									
	1. To solve ordinary differential equations using different methods									
	2. To study Sturm separation theorem., Sturm's comparison theorem									
	3. To find power series solution of differential equations									
	4. To find solution of nonlinear differential equations									

Course Content						
Unit	Module	Content	Hours			
No.	No.					
1	Ι	Second order linear equations: The general solution of the homogeneous equations, Use of a known solution to find another solution, Homogeneous equations with constant coefficients. The method of undetermined coefficients. The method of variation of parameters	10			
2	I	Qualitative Properties of solutions of ordinary differential equations of order two: Sturm separation theorem.	6			
	II	Normal form, Standard form, Sturm's comparison theorem	4			
3	I	Power Series solutions: Review of power series, Series solutions of first order equations; Second order linear equations, Ordinary points, Regular singular points, Indicial equations, Gauss's Hypergeometric equation, The point at infinity. Linear systems, Homogenous linear systems with constant coefficient. Non-linear systems, Volterra's Prey- Predator equations	12			

4	I	Nonlinear equations: Autonomous systems, Critical points, Stability, Liapunov's direct method, Nonlinear mechanics, Conservative systems. The existence and uniqueness of solutions. The method of successive approximations, Picard's theorem, Systems, The second order linear equations	12
5	I	Calculus of variations: Euler's Differential equation with extremal, isoperimetric problems.	8
		Total No. of Hrs	52

Beyond the Syllabus: Numerical and graphical methods of solving ODE

Students	Students should able to				
CO1	Find solution of ordinary differential equation of higher order by using various methods				
CO2	Provide the existence and uniqueness of solution of ODE.				
CO3	Understand the concept of stability and methods of successive approximation.				
CO4	Learn how to extremized functionals and apply the concept to various problems.				

Resources		
Recommended	1.	G.F. Simmons : Differential equations with applications and Historical
Books		Notes, Second Edition (Mc-Graw Hill)
Reference Books	1.	G. Birkhoff and G.C. Rota : Ordinary differential equations. (John Wiley and
		Sons)
	2.	E. A. Coddington : Ordinary differential equations. Prentice Hall of India.
	3.	S. G. Deo, V. Lakshmikantham, V. Raghvendra. Text book of Ordinary
		Differential Equations. Second edition.Tata Mc-Graw Hill.

Course TPMT -		Probability and Random Variables								
104										
Year First				Semester	I		Prerequisite			
Те	achin	g Sche	me	Continu	ous Intern	al Assessn	nent	End Ser	nester	Total
(Hrs/Week)				(CIA)				Examination		Marks
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory	Lab	
4	1	-	5	20	20	10	-	50	-	100
	Max. Time, End Semester Exam (Theory) -3Hrs.									
Course Objectives										
	1. To understand theory of probability									
	2. To study distribution functions of random variable									
	3. To study mean, variance, covariance and coefficient of correlation of random variables									

Course	Content		
Unit	Module	Content	Hours
No.	No.		
1	I	Review of probability, Algebra of space, notion and axiom of probability, equally likely events, conditional probability, total probability, independent events	10 hrs
2	I	Random variables, distribution function, discrete random variables and probability mass function, Continuous random variable and probability density function,	10 hrs
3	I	Mean and variance of random variables, conditional distributions, multiple random variables, bi-variate random variables, joint distribution functions, joint probability mass function, joint probability density function	11 hrs
4	I	Conditional distribution, covariance and correlation coefficients, conditional means and conditional variance, N-variate random variables, special distributions	11 hrs
5	I	Functions of random variables: Functions of one random variable, Functions of two random variables, Functions of n random variables, expectations.	10 hrs

F			
F		Total No. of Hrs	52

Beyond the Syllabus: Estimation Theory

Course (Course Outcome						
Student	s should able to						
CO1	Find probability of an event						
CO2	Obtain distribution function of random variables						
CO3	Find mean, variance, covariance and coefficient of correlation of random variables						

Resources	
Recommended	Probability, Random Variables, & Random Processes: HWEI HSU, MaGraw Hill
Books	education, New Delhi, 2014.
Reference Books	Statistical Methods: Volume I and II, N. G. Das, Tata MaGraw Hill
	education, New Delhi.

Course		ΤΡΜΤ	-	Complex A	nalysis					
		201								
Year		First		Semester	II				Prerequisite	Calculus
Те	achin	g Sche	me	Continu	ous Intern	al Assessn	nent	End Ser	nester	Total
(Hrs/Week)				(CIA)			Examination		Marks	
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory Lab		
5	0	-	5	20	20	10	-	50	-	100
Max. Time, End Semester Exam (Theory) -3Hrs.										
Cou	Course Objectives									
	1. To	o make	familia	ar with famil	ies of anal	ytic functic	ons			
	2. To	o expos	ed to o	complex inte	gration					
	3. To	o go the	orough	with harmo	nic functio	ons and pov	wer serie	s expansions		
4	4. To study singularities and maximum modulus Theorems									
ļ	5. To study thorough with compactness and convergence in space of analytic function									

Course Content							
Unit	Module	Content	Hours				
No.	No.						
1	Ι	The complex Number System and topology of complex plane: The field of complex numbers, lines and half planes in complex planes, the extended plane and its spherical representation, connectedness, sequence and completeness, compactness, continuity, uniform convergence.	8				
2	I	Elementary properties and examples of analytic functions: Power series, analytic functions, analytic functions as mappings, Mobius transformations, Riemann-Stieltjes integrals, power series representation of analytic functions, zeroes of an analytic function.	9				
3	I	Complex Integration: The index of a closed curve, Cauchy's Theorem and integral formula, the homotopic version of Cauchy's Theorem and simple connectivity, counting zeroes, the open mapping Theorem, Goursat's Theorem	12				

4	I	Singularities and maximum modulus Theorems: Classification of singularities, residues, argument principle, maximum principle, Schwarz's Lemma, convex functions and Hadmard's three circle Theorem	11
5	I	Compactness and Convergence in space of analytic function: The space of continuous function, spaces of analytic functions, spaces of meromorphic functions, Riemann mapping Theorem, Weierstrass Factorization Theorem	12
		Total No. of Hrs	52

Beyond the Syllabus: Complex Manifolds	

Course Ou	Course Outcome					
Students	Students should able to					
CO1	Discuss about connectedness, compactness, continuity and uniform convergence of complex functions					
CO2	Find power series representation, Mobius transform and integration of analytic functions					
CO3	Apply Cauchy's theorem and Formula, Goursat's Theorem.					
CO4	Classify singularities and apply maximum principle, Schwarz's Lemma					
	Study Meromorphic functions, Riemann mapping Theorem, Weierstrass Factorization Theorem					

Resources		
Recommended	J.B. Conway, Functions of One Complex Variable, 2 nd Edition, Narosa, New Delhi	
Books		
Reference Books	1. Complex Analysis, E. Stein and Shakarchi, Overseas Press (India) Ltd., Princeton	
	Lectures in Analysis.	
	·	

2.Lars V. Ahlfors : Complex Analysis (McGraw Hill)
3.Ruel V. Churchill / James Ward Brown : Complex Variables and Applications (McGraw Hill)

Cou	rse TPMT-202 Linear Algebra									
Year	-	First		Semester	II	Prerequisite			Calculus	
Те	eachin	g Sche	me	Continuous Internal Assessment				End Semester		Total
(Hrs/Week)				(CIA)				Examination		Marks
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory	Lab	
5	0	-	5	20	20	10	-	50	-	100
	Max. Time, End Semester Exam (Theory) -3Hrs.									
Cou	Course Objectives									
	1. To understand linear mapping and operations on vector spaces									
	2. To understand reduction of matrices to canonical forms									
3. To understand Jordan forms										

Course Content						
Unit	Module	Content	Hours			
No.	No.					
1	I	Vector Spaces and Linear Transformation: vector spaces, subspaces, bases and dimension, coordinates, algebra of linear transformation, isomorphism, representation of transformation by matrices, linear functional, double dual, transpose of a linear transformation.	12			
2	I	Polynomials: Algebra of polynomials, Lagrange's Interpolation, polynomial ideals, prime factorization of a polynomial	10			
3	I	Determinants: Commutative rings, determinant functions, permutations and uniqueness of determinants, modules, multilinear functions.	10			
4	I	Elementary Canonical Forms: Characteristic values, annihilating polynomials, invariant subspaces, simultaneous triangulation, simultaneous diagonalization, direct sum decompositions, invariant direct sum.	10			
5	I	The Rational and Jordan Form: Cyclic subspaces and annihilators, cyclic decompositions and rational form, Jordan form, computation of invariant factors	10			

	Total No. of Hrs	52

Beyond the Syllabus: Banach Spaces

Course Outcome						
Students	Students should able to					
CO1	Find subspaces, dimension of vector space and matrix representation of linear transformation					
CO2	Apply Lagrange interpolation to find polynomial					
CO3	Study commutative rings , determinant functions, modules					
CO4	Find Characteristic values, annihilating polynomials, invariant subspaces					
	Find Jordan form, rational form and invariant subspaces of linear transformation					

Resources	
Recommended	K. Hoffman and Ray Kunze : Linear Algebra (Pearson Education, Inc.)
Books	
Reference Books	1. P.B. Bhattacharya, S.R. Nagpaul, S.K.Jain: First Course in Linear Algebra –
	2. M. Artin : Algebra (Prentice -Hall of India private Ltd.)
	3. A.G. Hamilton : Linear Algebra (Cambridge University Press).
	4. N.S. Gopalkrishnan : University algebra (Wiley Eastern Ltd.).
	5. J.S. Golan : Foundations of linear algebra (Kluwer Academic publisher).
	6. Henry Helson : Linear Algebra, (Hindustan Book Agency).
	7. I.N. Herstein : Topics in Algebra, Second edition, (Wiley Eastern Ltd.)

Cou	Course TPMT-203 Partial Differential Equation									
Year		First		Semester	II		Prerequisite		Calculus	
Teaching Scheme			Continuous Internal Assessment				End Semester Examination		Total	
(Hrs/Week)		(CIA)			Marks					
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory	Lab	
4	1	-	5	20	20	10	-	50	-	100
	Max. Time, End Semester Exam (Theory) -3Hrs.									
Cou	Course Objectives									
1. To be familiar with formulation and solution of PDE										
2. To study in detail the solutions of first and second order PDE										
	3. To solve physical problems									
4	4. To study the applications of PDE									
1	5. To be thorough boundary value problems									

Course	Content		
Unit	Module	Content	Hours
No.	No.		
1	I	Partial Differential Equations of first order: Surface and normal, curves and tangents, formulation of Partial Differential Equations, solution of Partial Differential Equations of first order, integral surfaces passing through a given curve, Cauchy problem for first order equations, surfaces orthogonal to a given system of surfaces, compatible system of first order equations, Charpit's method	12
2	I	Partial Differential Equations of second order: Classification of second order Partial Differential Equations, canonical form for hyperbolic equation, parabolic equation and elliptic equation, adjoint operators, Riemann's method, Linear PDE with constant coefficients.	10
3	I	Elliptic Differential Equations: Occurrence of the Laplace and Poisson's equations, boundary value problems, properties of harmonic functions, separation of variables, Dirichlet's problem for a rectangle, Neumann problem for a rectangle, interior Dirichlet's problem for a	10

		circle, exterior Dirichlet's problem for a circle.	
4	I	Parabolic Differential Equations: Occurrence of diffusion equation, boundary conditions, elementary solutions of the diffusion equation	9
		dirac delta function, separation of variable method.	
5	I	Hyperbolic Differential Equations: Occurrence of wave equation, derivation of one dimensional wave equation, solution of one dimensional wave equation by canonical reduction, the initial value problem, D'Alembert's solution, vibrating string- variable separable solution, forced vibration- solution of nonhomogeneous equation.	11
		Total No. of Hrs	52

Beyond the Syllabus: Numerical solution of PDE

Students	Students should able to			
CO1	Solve partial differential equation of first order using Charpit's method, compatible solution			
CO2	Classify second order partial differential equations into parabolic, elliptic and hyperbolic type			
CO3	Study Laplace and Poisson's equations, boundary value problems, Dirichlet's problem,			
	Neumann problem			
CO4	Study Diffusion equation, Dirac-delta function and separation of variable method			
	Solve Wave equation, D'Alembert's equation			

Resources	
Recommended	K. Sankara Rao: Introduction to partial differential equation, third edition (Prentice -
Books	Hall of India private Ltd.)
Reference Books	1.W. E. Williams: Partial Differential equations (Clarendon press-oxford)
	2.E. T. Copson : Partial differential equations (Cambridge university press)

3.I.N. Sneddon: Elements of partial differential
4. T. Amarnath : An Elementary Course in Partial Differential Equations (2nd edition) (Narosa Publishing House)
5. E. Di Benedetto, Partial Differential Equations, Birkhaüser.
6 .F. John, Partial Differential Equations, 3 rd Edition, Narosa

Course TPMT-204		Random Processes								
Year	Year Second Semester II			Prerequisite	Calculus					
Teaching Scheme			me	Continu	ious Intern	al Assessn	nent	End Semester		Total
(Hrs/Week)				(CIA)			Examination		Marks	
L	Т	Р	С	CIA-1	CIA-2	CIA-3	LAB	Theory	Lab	
4	1	-	5	20	20	10	-	50	-	100
	Max. Time, End Semester Exam (Theory) -3Hrs.									
Course Objectives										
1. To understand functions of random variables										
	2.	To fa	miliari	zes random	processes					
	3. To analyses and processing of random processes and their application									

Course	Content		
Unit	Module	Content	Hours
No.	No.		
1	I	Functions of random variables and limit theorem: Moment generating functions, characteristic functions, the laws of large numbers and central limit theorem	10 hrs
2	I	Random Processes: Introduction, random processes, characterization of random processes, classification of random processes	10 hrs
3	I	Discrete-parameter Markow chains of random processes, Poisson processes, Wiener processes	12 hrs
4	I	Analysis and processing of random processes: Introduction, continuity, differentiation, integration, power spectral densities, white noise	8 hrs
5	I	Analysis and processing of random processes: Response of linear system to random input, Fourier series, Fourier transform of random processes	12 hrs

Beyond the Syllabus: Decision Theory

Students should able to		
CO1	Understand different random processes	
CO2	Differentiate, integrate random processes	
CO3	Apply random processes to linear systems	
CO4	Find Fourier transform of random processes	

Resources	
Recommended	Probability, Random Variables, & Random Processes: HWEI HSU, MaGraw Hill
Books	education, New Delhi, 2014.
Reference Books	Statistical Methods: Volume I and II, N. G. Das, Tata MaGraw Hill education, New Delhi.