

Courses of Study 2019-20 Msc Microbiology IILP

SANDIP UNIVERSITY

School of Science

M.Se	c (P	art	Tim	e) 1	201	18-	19																											
Semester					Course 1				Course II				Course III				Course IV				Course V				Course VI				Course VII	L	т	Ρ	с	Contact Hours
		(Code				С	ode	1		С	ode	T		С	ode	T		Со	de			С	ode			Со	ode						Ŭ
	L	Τ	' P	C		L	Т	Р	C	L	Т	Р	С	L	Т	P	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	-				
Ι	4	0	0	4		4	0	0	4	4	0	0	4	4	0	0	4	0	0	4	2	0	0	4	2	0	0	4	2	-				
			PC				F	PC			I	РС			F	PC			PO	2			Р	PC			U	С		16	0	8	22	24
	MD	DT IMB			СМВ			ЕММ			MDTIMBL			СМ	IBEM	IM		Sen	ninar I	I														
		(Code				С	ode			С	ode			С	ode			Со	de			С	ode			Со	ode						
	L	Т	P	C		L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С	L	Т	Р	С					
	4	0	0	4		4	0	0	4	4	0	0	4	4	0	0	4	0	0	4	2	0	0	4	2	0	0	4	2					
П			PC				F	PC			I	РС			PC	CE1			PO	2			P	РС			U	С		16	0	8	22	24
	PS			QBV	VQE	Р		MN	1V				D	E1		PSQ	QBVQ	EPL		MN	1VDE	E1L		Sen	ninar I	II								

M.S	c (P	art Ti	ime) 20)18-	-19																											
Semester				Course I				Course II				Course III								Course V				Course VI				Course VII	L	т	Ρ	С	Contact Hours
		Сос	1			Со	1			Со					ode			1	ode				ode			Со	r						Ŭ
	L		P	C	L	T	P	C	L	T	P	C	L	T	P	C	Ĺ	T	P	C	L	T	P	C	L	T	P	C					
III	4	U	0	4	4	0	0	4	4	0	0	4	0	0	4	2	0	0	8	4	0	0	0	2	0	0	0	0					
		PC				PO				PC	E2			P	C			ι	JC			U	C						12	0	12	20	24
	EEE	M				MB	GE			DE	Ш			LA	B V		Pro	ject	Stage	I	Inte	rnshij	рI										
		Сос	le			Со	de			Со	de			Со	ode			С	ode			Сс	ode			Со	de					11	
	L	T	Р	С																					L	Т	Р	С					
>	0	0 3	32	16																					0	0	0						
N		UC	2																										0	0	32	16	32
		ect Stag a Voce	eΠd	&																													
																													4		6	8	
																										Т	[ota]	1	4	0	0	0	104

	Department Elective I					Department Elective II							
	Microbiology						Microbiology						
Course Code	Course	L	Т	Ρ	С	Course Code	Course	L	Т	Ρ	С		
1	Research Methodology, IPR, Environmental Protection Act.	4		2	6	1	Immunology	4		2	6		
2	Genetics	4		2	6	2	Bioinformatics and Structural Biology	4		2	6		
3						3							
						4							

Year: First Year Course: Microbial Diversity and Taxonomy

Semester: I Course Code:

	Sch	chiną eme Wee		Contin	uous Inte	ernal Ass	sessment	End Sei Examir		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	ax. 7	Fime	e, Er	nd Semest	ter Exan	•		-			

Prerequisite Introduction to microbiological concepts, terms etc.

Objec	tives
1	To expand knowledge on Evolution and microbial diversity
2	To understand bacterial taxonomy
3	To study various classes of fungi in terms of their characteristic features.
4	To assimilate the concepts of unculturable bacterial diversity
5	To expand knowledge on Evolution and microbial diversity

Unit Number	Details	Hours
	Differences in concept of 'species' in eukaryotes and prokaryotes.	12 L
1	Definition of species in prokaryotes.	
	Types of 'species'	
	Evolution of species and concepts of speciation (in sexualand asexual	
	organisms)	
	Types of evolution (neutral, co-evolution); Types and levelsof selection; r and k	
	selection; molecular clocks; phylogenyand molecular distances	
	The expanse of microbial diversity	12 L
2	Estimates of total number of species	
	Species Divergence and the measurement of microbial diversity.	
	Measures and indices of diversity	
	Introduction to Bacterial Taxonomy	12 L
3	The 5-Kingdom classification system	
	The 3-Domain classification system	
	Bergey's Manuals and the classification of prokaryotes.	

Page 🕇

	Determinative Bacteriology (Phenetic Approach)	
	Systematic Bacteriology (Phylogenetic Approach	
	Polyphasic Approach	
4	The 6 Classes of Fungi.	12 L
	The differentiating characters among different Classes of fungi.	
	The importance of morphological characters in fungal differentiation and	
	classification.	
	Concept of 'unculturable' bacterial diversity.	12 L
5	Strategies for culture of 'unculturable' bacteria.	
	Culture independent molecular methods for identifying unculturable bacteria.	
	Methods of extracting total bacterial DNA from a habitat and metagenome	
	analysis.	
	Total	60

Course	Course Outcome							
Student	ts should able to							
CO1	Student will be able to understand the concepts microbial taxonomy and methods of nomenclature.							
CO2	Student will be able to use the knowledge for isolation and identification of microorganisms from variety of sources.							
CO3	Student will be able to classify the microorganisms based on classical and advanced methods.							
CO4	Student will be able to understand microbial diversity, species and estimation of various microbial species from different sources.							
CO5	Student will be able to understand evolution of microbial species.							

	Resources
	• Jacquelyn G. Black (2013) Microbiology: Principles and
	Explorations, 6th Edition, John Wiley & Sons, Inc.,
	• Microbial Diversity: Form and Function in Prokaryotes,
	Published Online: 30 NOV 2007.
	DOI: 10.1002/9780470750490.ch1
Recommended	• Ridley Mark (2004). Evolution. Blackwell Science Ltd.
Books	• Breed and Buchanan. Bergey's Manual of Determinative
	Bacteriology. 8th Edition, 1974.
	• Breed and Buchanan. Bergey's Manual of Determinative
	Bacteriology. 9th Edition, 1982.
	• Breed and Buchanan. Bergey's Manual of Systematic
	Bacteriology. $2nd$ Edition, (Volumes. $1-5$) (2001 – 2003).
	• Sykes, G. and F. A. Skinner (Eds). Actinomycetales:
	Characteristics and Practical Importance. Society for Applied
Reference	Bacteriology Symposium Series No. 2, Academic Press. 1973.
Books	• Jacquelyn G. Black (2013) Microbiology: Principles and
DOORS	Explorations, 6th Edition, John Wiley & Sons, Inc.,
	• Lodder J. (1974). The Yeasts: A Taxonomic Study, North
	Holland Publishing Co. Amsterdam.

 ${}^{\rm Page}S$

Year: First Year Course: Instrumentation and Molecular Biophysics

Semester: I Course Code:

	Feac Sch Irs/V	eme		Contin	uous Inte	ernal Ass	sessment	End Sei Examii		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	-	100				
Ma	ax. T	ſime	e, Er	nd Semest	ter Exan	5.					

Prerequisite	• Introduction and basic concepts of instrumentation, analytical techniques
rierequisite	Basic concept related to biochemical and biophysical methods

Objec	tives
1	To create general understanding of various bioanalytical methods.
2	To familiarize the students with principles of bioinstrumentation used in qualitative and
	quantitative analysis.
3	To develop the concepts and train the students to increase their competency
4	To develop analytical skills of students
5	To orient students towards biological research with the help of bioinstrumentation
	techniques

Unit Number	Details	Hours					
1	Laboratory Instruments: Theory, Principle, Working and applications of: pH						
	meter, Laminar air flow, Centrifuge machine types and Centrifugation:						
	Differential, Rate Zonal, Isopycnic, Density gradient, Rotor types and Ultra						
	centrifugation. Phase Contrast Microscope; Fluorescent Microscope; Scanning						
	and Transmission Electron Microscopy.						
2	Chromatography Techniques: Theory, principle, operation and applications	2					
	of Paper Chromatography, TLC, HPTLC, Gel Filtration Chromatography, Ion						
	Exchange Chromatography, Affinity Chromatography, Gas Chromatography,						
	and HPLC.						
	Electrophoretic Techniques: Theory, Principle and Applications of Paper						
	Electrophoresis, Poly Acrylamide Gel Electrophoresis (PAGE), Agarose Gel						
	Electrophoresis. Principle and Applications of: Iso-electric Focusing						
	Radio-isotopic Techniques : Introduction to Radioisotopes and their						
3	Biological Applications, Radioactive Decay-Types and Measurement,	3					

Page6

	Principles and Applications of GM (Geiger Muller) Counter, Solid and Liquid	
	Scintillation Counter, Autoradiography, Radioimmunoassay (RIA), Radiation	
	Dosimeters.	
4	Molecular Biophysics: Theoretical and experimental methods for determination	4
-	of size of proteins, Physical nature of non-covalent interactions,	-
	Conformational properties of proteins, Ramachandran plot, secondary, super-	
	secondary, tertiary and quaternary structures of proteins, Classification of three	
	dimensional structures of proteins (motifs and fold domains) Protein	
	structure/properties determination.	
5	Spectroscopies of Biomolecules and Biophysical Techniques	5
	1. UV/Visible spectroscopy- Instrumentation, Molar Absorptivities, Beer and	
	Lamberts Law, Bathochromic and hypsochromic shifts.	
	2. Fluorescence spectroscopy- Instrumentation, Quantum Yield, Quenching,	
	FRET, Binding and Folding studies.	
	3. Infrared spectroscopy- Principle, Instrumentation, Absorption bands, FTIR	
	and its advantages	
	4. Circular Dichroism (CD) – Instrumentation, Circular polarization, Delta	
	absorbance, Cotton Effect.	
	5. Mass spectroscopy: Principles of operation and types of spectrometers,	
	ionization, Ion fragmentation, Mass analyzers, GC-MS, Biological applications,	
	MALDI-TOF	
	6. X-ray crystallography: Isolation and purification of proteins, crystallization	
	of proteins, instrumentation, acquisition of the diffraction pattern, basic	
	principles of x-ray diffraction, Phase determination	
	7. NMR spectroscopy: Basic Principles of NMR, Chemical shift, Intensity, Line	
	width, Relaxation parameters, Spin-spin coupling, Nuclear Overhauser Effect,	
	NMR Applications in Biology	
	Total	60

Course	Course Outcome								
Studen	Students should able to								
CO1	Student will be able to demonstrate an understanding of various instruments that are required in biological processes.								
CO2	Student will be able to demonstrate the basic understanding of the instruments used for bilogical studies.								
CO3	Student will be able to demonstrate the basic idea and applications of the instruments or techniques								
CO4	Student will be able to introduce principle of basic techniques and train them to apply these concepts and ideas in technology.								
CO5	Student will be able touse the knowlegde of techniques and develop the problem-solving approach.								
Resource	Resources								
Recom Books	• Clive Dennison (2002) A guide to protein isolation, KluwerAcademic Publishers								

 P_{age} 7

	• Pattabhi, V. and Gautham, N. (2002) <i>Biophysics</i> . KluwerAcademic Publishers, New York and Narosa PublishingHouse, Delhi.
	• David J Holme, Hazel Peck (1998) <i>Analytical Biochemistry</i> ,3rd ed ., Prentice Hall, Pearson Education Limited, HarlowEngland.
	• Rodney F. Boyer (2000) <i>Modern Experimental Biochemistry</i> 3d edition,Benjamin Cummings.
	• Nölting, B. (2006) <i>Methods in modern biophysics</i> . SecondEdition. Springer, Germany.
	• Wilson Keith and Walker John (2005) <i>Principles andTechniques of Biochemistry and Molecular Biology</i> , 6th Ed.Cambridge University Press, New York.
	• Pattabhi, V. and Gautham, N. (2002) <i>Biophysics</i> . KluwerAcademic Publishers, New York and Narosa PublishingHouse, Delhi.
	• Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, Agnieszka Kraj (2009) <i>Mass spectrometry: instrumentation, interpretation, and applications</i> , John Wiley & Sons, Inc., Canada.
	• Irwin H. Segel (1976) <i>Biochemical Calculations: How to SolveMathematical Problems in General Biochemistry</i> , 2nd Edition.John Wiley & Sons.
	• Nölting, B. (2006) <i>Methods in modern biophysics</i> . SecondEdition. Springer, Germany.
	• Pattabhi, V. and Gautham, N. (2002) <i>Biophysics</i> . KluwerAcademic Publishers, New York and Narosa PublishingHouse, Delhi.
	• Cavanagh John <i>et.al.</i> (1995) <i>Proteins NMR Spectroscopy:Principles and Practice</i> , Academic Press.
	• Keeler, J. (2002) Understanding NMR Spectroscopy. JohnWiley & Sons,
	 England. Drenth, J. (2007) <i>Principles of protein X-ray crystallography</i>.3rd Ed. Springer, Germany.
	 Nölting, B. (2006) Methods in modern biophysics. SecondEdition. Springer,Germany.
	• Cotterill, R. M. J. (2002) <i>Biophysics: An Introduction</i> . JohnWiley & Sons, England.
Reference Books	• David J Holme, Hazel Peck (1998) <i>Analytical Biochemistry</i> ,3rd Ed., Prentice Hall, Pearson Education Limited, HarlowEngland.
	• Berg, J. M., Tymoczko, J. L. and Stryer, L. (2006) <i>Biochemistry</i> . 6th Edition. Freeman, New York.
	• Garrett, R. H. and Grisham, C. M. (2004) <i>Biochemistry</i> . 3 rd Ed. Brooks/ Cole, Publishing Company, California
	• Cotterill, R. M. J. (2002) <i>Biophysics: An Introduction</i> . JohnWiley & Sons, England.
	• Christof M. Niemeyer and Chad A. Mirkin (2006) <i>Nanobiotechnology</i> , John Wiley & Sons.
	• Daniel L. Feldheim and Colby A. Foss, Jr. (2002) Metalnanoparticles synthesis and characterization and applications Marcel Dekker, Inc.
	• Mahendra Rai and Nelson Duran (2011) <i>Metal nanoparticles inMicrobiology</i> , Springer Verlag Berlin Heidelberg.

 ${}^{\rm Page}8$

Year: First Year Course: Cell and Molecular Biology

Semester: I Course Code:

	Teaching Scheme (Hrs/Week)		cheme Continuous Internal Assessment (CIA)					End Semester Examination		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

• Introduction and basic concepts of living cell, cellular system etc.

Objec	tives
1	To introduce the fundamental concepts and processes of living organisms at cellular and molecular level.
	molecular level.
2	To familiarize the students with the importance of cellular and molecular process for
	encouragement towards research and develop scientific thinking
3	To develop proficiency and technical skills of students.
4	To apply the knowledge cellular and molecular mechanism of biological system to address
	various problems
5	To develop research driven approach for better understanding of the applications of
	biological processes

Unit Number	Details						
	Structural organization Membrane and Communication of cell	12 L					
	1.1- Introduction, History and General organization of Prokaryotic cell-						
1	Mycoplasma, Viruses, Viroids and Bacteria (E.coli).						
	1.2 General organization of Eukaryotic cell (Plant cell)						
	1.3 Composition of cell membrane						
	1.4 Molecular models-Unit membrane, Daniely and Dowson's Model, Fluid						
	mosaic Model.						
	1.5 Functions of cell membrane						
	1.6General principles of cell signaling.						
	1.7 G-protein linked receptors.						
	1.8 Enzyme linked receptors.						
	1.9 Mitosis and Meiosis						



Page

2	 Structural organization, functions of cell organelles and Cytoskeleton 2.1 Nucleus-Ultrastructure, Nuclear envelop, Pore complex 2.2 Mitochondria-Morphology, molecular structure, membranes, molecular organization, Biogenesis, DNA, Symbiotic hypothesis Termination codon, Genetic code. 2.3 Chloroplast-Morphology, Ultra structure, molecular organization of thylakoids, Biogenesis, DNA, Semi-autonomous nature. 2.4 Golgi complex- Morphology, cytochemistry 2.5 Endoplasmic reticulum-Morphology, Biogenesis, protein segregation 	12 L
3	Structural organization, functions of cell organelles and:Cytoskeleton: 3.1Ribosomes-types, structure.3.2Structure and functions of Lysosomes, Vacuoles, Peroxisomes.3.3Microtubules-cillia, flagella, & centrioles.3.4Intermediate filaments.3.5Microfilaments and cell motility.	12 L
4	 Deoxyribose Nucleic Acid 4.1 DNA-chemical composition, bases, sugar, phosphate, Nucleosides, Nucleotides, Polynucleotides, Bonding systems, Watson and Crick double helix model of DNA, Types-A, B, and Z DNA. 4.2 DNA Replication-Replicon, Replisome, Primosome, Replication fork, Origin of replication (OriC in <i>E. coli</i>) RNA-primer, Semidiscontinuos synthesis, Leading strand, Lagging strand, Okazaki fragments, prokaryotic and Eukaryotic enzymes involved in DNA- fragments, prokaryotic and Eukaryotic enzymes involved in DNA- replication, Unidirectional and bidirectional DNA- replication, 4.3-Replication in closed circular DNA- θ-mode, σ-mode and D-loop replication. 4.4-DNA-damages and Repair:-Damages-Dimer formations, mismatch pair, 4.6 Significance of DNA 	12 L
5	Ribose Nucleic acid, Gene Regulation and Transposons5.1-Structure and functions of tRNA, rRNA, mRNA5.2-Transcription-Capping, elongation, and termination, Role of RNA- polymerases.5.3-Processing of RNA- RNA-editing, splicing, polyadenylation5.4 Constitutive and regulated genes, Positive and negative control, transcriptional control, translational control, and post-translational control5.5 Gene regulation in Prokaryotes- Inducible operon-lac operon, Represible operon-trp operon.	12 L
	Total	60

Course	Outcome				
Students should able to					
CO1	Student will be able to describe fundamental processes of cell.				

CO2	Student will be able to explain the cellular processes of biological system
CO3	Student will be able to understand the molecular mechanism involved in biological system.
CO4	Student will be able to apply the knowledge to solve problems related to biological sciences
CO5	Student will be able to understand gene regulation mechanism to address number of biological challenges

Resources									
Recommended	1. Strickberger. Genetics. 3rd Ed. 1990. Ed.								
Books	2. A. K. Sharma and A. Sharma. 1990. Chromosome techniques								
	3. P.K. Gupta. 1990. Genetics.								
	4. Principles & Methods in Plant Molecular								
	Biology, Genetics & Biochemistry, Agrobios. Prathibha Devi								
	5. A. K. Sharma and A. Sharma. 1990. Chromosome techniques.								
Reference Books	1. E.D.P. De Robertis and E. M. F. De Robertis. 1987. Cell and Molecular								
	biology8th Ed(Indian Ed								
	2. G. M. Cooper. 1997. The Cell and Molecular approach. ASM Press. Ed.								
	3. Snustad and Simmons. 1997. Principles of Genetics. Ed.								
	4.Benjamin Lewis. 1999. Genes VII.								
	5. Daniel Hartl. 1994. Basic Genetics. Ed								
	6.Winter, Hicky and Fletcher. 1999. Instant notes in Genetics. Ed.								
	7.A.V.S.S. Sambamurthy. 1999. Genetics.								
	8.P.K. Gupta. 1990. Genetics.								
	9. Twyman. 1998. Advanced Molecular Biology.								
	10.Turner, Mclennon, Bates and White. 1999. Instant notes in								
	MolecularBiology.								
	11.Primrose. 1999. Molecular Biotechnology.								
	12.Stansfield. 1996. Theory & Problems in Genetics. Schaum's Series.								
	McGraw & Hill.								

Year: First Year

Semester: I

Course: Enzymes and Microbial Metabolism

Course Code:

	Teaching Scheme (Hrs/Week)		cheme Continuous Internal Assessment (CIA)					End Semester Examination		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite	 Introduction and basic concepts of enzymes Basic concept of microbial physiology
--------------	---

Object	ives
1	To impart the knowledge of microbial physiology and biochemistry that needed to
	develop the concepts and skills related to subject.
2	To understand and critically evaluate research that addresses physiological and
	biochemical processes of microbes.
3	To encourage application of the theories related to microbial metabolism for production of
	bio-products and to address current problems.
4	To impart the knowledge of enzymes, its kinetics, extraction and applications.
5	To develop an understanding of metabolic processes carried out in all kind of living
	systems

Unit Number	Details	Hours					
1	Enzyme Kinetics	12 L					
	Purifications of enzyme, purification chart, kinetics of single substrate enzyme catalyzed reaction.						
	Kinetics of reversible inhibitions enzyme catalyzed reactions, King Altman approach to derive – two substrate enzyme catalyzed reactions, types of two substrate enzyme catalyzed reactions, concept of allosterism, positive and negative co-operatively, models of allosteric enzymes (Monod, Wyamann						
	and Changuax model,Koshland, Nemethy and Filmer model), kinetics of allosteric						
	enzyme, Hill plot, examples of allosteric enzymes and their significance in allosteric regulation						
2	Bio-energetic	12 L					
	Laws of thermodynamics, entropy, enthalpy, free energy, freeenergy and equilibrium constant, Gibbs free energy equation, determination of free						

Page _

	Lipid Biosynthesis Synthesis of storage lipids: Fatty acids and triacylglycerols,Synthesis of membrane lipids: Glycerophospholipids, sphingolipids, sterols, Lipids as signal molecules such asphosphatidyl inositol, eicosanoids, Vitamins, A, D, K, and E,Dolichols.	
	membrane, Synthesis of starch and sucrose, Photorespiration, C4 and CAM pathways, synthesis of celluloseand peptidoglycan, integration of carbohydrate metabolism inplant cell.	
3	Biosynthesis of carbohydrates in plants and bacteria Calvin cycle and its regulation, Transport of solute acrosschloroplast	14 L
5	donors other than water in anoxygenic photosynthetic bacteria Biosynthesis of earbohydrates in plants and bacteria	12 L
	photosystem I and II, cyclic and non-cyclic flow of electrons, Z scheme, Hill reaction, photolysis of water, C ₃ , C ₄ CAM plants, Photorespiration, Regulation of photosynthesis, Bacterial photosynthesis: scope, electron carriers, Photosynthetic reaction center, cyclic flow of electrons, bacterial photophosphorylation in various groups of phototrophic bacteria, electron	
	Photosynthesis Structure of chloroplast, energy consideration in photosynthesis, light and dark reaction, electron carriers in photosynthesis, Organization of	
	Biosynthesis of purine and pyrimidine bases	
	its regulation, ammonia assimilation with respect to glutamine synthetase, glutamate dehydrogenase, glutamate synthetase, their properties and regulation, Biosynthesis of five families of amino acids and histidine,	
4	Nitrogen metabolism Biochemistry of biological nitrogen fixation, properties of nitrogenase and	12 L
	energy generation of bacteria where nitrate, sulfate and carbonate acts as terminal electron acceptors	
	electrontransport chain and oxidative phosphorylation. Concept of anaerobic respiration, components of electrontransfer system and	
	motive force, oxidative phosphorylation, inhibitors and un-couplers of	
3	Membrane Transport Aerobic and anaerobic respirationmitochondrial electron transport chain, structure and function of ATPase, generation and maintenance of proton	12 L
•	phosphorylation potential and its significance	101
	standard and non-standardconditions, high energy compounds, coupled reactions, determination of feasibility of reactions, Atkinson's energy charge,	
	atan dan dan dan dan dan dan ditional biah ananary sama aya da saya lad	

Course Outcome Students should able to						
CO1	Student will be able tounderstand the concepts of microbial physiology					
CO2	Student will be able to understand the metabolic processes carried out in microorganisms					
CO3	Student will be able to understand the role of enzymes in biological systems including microbial metabolism					

 $_{\text{Page}}13$

CO4	Student will be able to study enzyme kinetics, extraction and purification methods of enzymes from biological systems
CO5	Student will be able to integrate the fundamental processes with their applications

Degewynaeg									
Resources									
Recommended	1. Cox M. M., Nelson D. L., (2008) Lehninger Principles ofBiochemistry,								
Books	Fifth edition, W. H. Frreman and CompanyNew York								
	2. Garrett, R. H. and Grisham, C. M. (2004) Biochemistry. 3 rd Ed.								
	Brooks/Cole, Publishing Company, California.								
	3. Hall D. D. and Rao K. K. (1996) Photosynthesis 5th Ed., Cambridge								
	University PressMandelstam Joel and McQuillen Kenneth (1976)Biochemistry								
	of Bacterial Growth, Blackwell ScientificPublication London.								
	4. Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark								
	(2012) Brock Biology of Microorganisms, Thirteenth edition, Benjamin								
	Cummings, San Francisco.								
	5. Moat Albert G. and Foster John W. (1988) <i>MicrobialPhysiology</i> 2nd Ed.								
	John Wileyand Sons New York.								
Reference Books	6. Nelson D. L. and Cox M. M. (2005) Lehninger's Principles of Biochemistry,								
	Fourth edition, W. H. Freeman & Co. NewYork.								
	7. Palmer Trevor (2001) Enzymes: Biochemistry, Biotechnologyand Clinical								
	chemistry, Horwood Pub. Co. Chinchester, England.								
	8. White David (2000) Physiology and Biochemistry of Prokaryotes. 2nd Ed.								
	Oxford University Press, New York.								

Year: First Year Course: Microbial Diversity and Taxonomy And Instrumentation and Molecular Biophysics Laboratory I Semester: I Course Code:

Teaching Scheme (Hrs/Week)				Contin	uous Inte	ernal Ass	sessment	(CIA)	End Sei Examir		Total
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
0	0	4	2	-	-	-		50	-	50	100
Ma	Max. Time, End Semester Exam (Theory) - 2Hrs.										

0	Objectives							
1	To acquire proficiency in identification of microorganisms using Bergey's manual							
2	To train the students in advance microbial techniques.							
3	To impart the knowledge of analytical methods in biological sciences							

Sr. No.	Description
1	Isolation of the following types of bacteria from natural samples.
	Identification of the bacteria to at least the Genus level using the Bergey's Manuals:
	The identification key must be designed for each isolated and identified bacterium.
2	Isolation of the following types of fungi from natural samples.
	Identification of the fungi. Molds (Saprophytic); Yeasts
	The identification key must be designed for each isolated and identified fungus.
3	Isolation and identification of any one type of cyanobacterium from a natural sample.
	The identification key must be designed for each isolated and identified cyanobacterium.
4	Preparation of buffers.
5	Chromatography: separation of sugar and amino acids by paper and thin layer
	chromatography.
6	Colorimetry and spectrophotometry: Estimation of sugar and total carbohydrates,
	estimation of protein by lowry. Bradford and UV spectrophotometry.
7	Electrophoresis: Agarose gel electrophoresis,
8	Electrophoresis: SDS PAGE of proteins.

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on attendance, good laboratory practice (GPL), timely completion, journal/record book, oral/viva, respectively. It should be assessed by course teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Page

Notes

- 1 The regular attendance of the students during semester for practical course will be monitored and marks will be given accordingly (10 Marks).
- 2 Good Laboratory Practices (10 Marks)
- 3 Timely Completion (10 Marks)
- 4 Journal / Record Book (10 Marks)
- 5 Oral / Viva (10 Marks)

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners appointed as internal and external examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Not	Notes							
1	One experiment from the regular practical syllabus will be conducted (40 Marks).							
2	Oral/Viva-voce (10 Marks).							

School of Science First Year M.Sc Microbiology (Part Time)

Year: First Year

Semester: I Course Code:

Course: Cell and Molecular Biology and Enzyme & Microbial Course C Metabolism Laboratory II

Teaching Scheme (Hrs/Week)				Continu	uous Inte	ernal Ass	sessment	(CIA)	End Ser Examin		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab		
0	0	4	2	-	-	-		50	-	50	100	

Max. Time, End Semester Exam (Theory) - 2Hrs.

O	Objectives				
1	To understand various cell activities using microscopic techniques.				
2	To create the general understanding among students related to production of bio-products.				
3	To give the overview for development of scientific methods of screening, characterizing				
	microbes and their use in production of microbial products.				

Sr. No.	Description
1	Studying the stages mitosis in growing tip of onion root cells
2	Demonstration of mounting of embryos (frog and fruit fly) at various developmental stages on permanent slides
3	Isolation and characterization of bacterial pigment
4	Isolation and estimation of chromosomal DNA of bacteria
5	Isolation and characterization of (as nitrogen fixers) Rhizobium or Azospirillum
6	Detection of siderophore production by Azospirillum and Pseudomonas
7	Production and extraction of bacterial enzyme. Purification of enzyme by ammonium sulphate precipitation and dialysis.
8 Torm Worl	Isolation and characterization of biodegradable bacteria

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on Attendance, Good Laboratory Practice (GLP), Timely Completion, Journal/Record book and Oral. It should be assessed by subject teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	Notes				
1	The regular attendance of the students during semester for practical course will be monitored and				
	marks will be given accordingly (10 Marks).				
2	Good Laboratory Practices (10 Marks)				
3	Timely Completion (10 Marks)				
4	Journal / Record Book (10 Marks)				
5	Oral / Viva (10 Marks)				
Pra	ctical/Oral/Presentation:				
Prac	ctical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners				

Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners appointed as internal and external examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Not	Notes		
1	One experiment from the regular practical syllabus will be conducted (40 Marks).		
2	Oral/Viva-voce (10 Marks).		

Year: First Year Course: Pharmaceutical science

Semester: II Course Code:

Teaching Scheme (Hrs/Week)			Continuous Internal Assessment (CIA)				End Semester Examination		Total		
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) -3Hrs.						·				

Prerequisite	 Introductory concepts of pharmaceutical science

Obje	ctives
1	To provide students with requisite knowledge, technical and scientific skills for appropriate development of therapeutic drugs.
2	To inculcate professionalism that will form the basis for integrated and multi-disciplinary approach to pharmaceutical and cosmeceuticals.
3	To ensure that the students are demonstrated with the importance and significance of research in advancing clinical studies.
4	To understand the guidelines and principles of various regulatory bodies.
5	To expand knowledge on chemotherapeutic agents

Unit Number	Details	Hours
	Drug Discovery	
1	1.1.Historical perspective	12 L
	1.2.Modern methods of drug discovery.	
	 1.3.Conventional Process Bioprospecting (Medicinal Chemistry) –Extraction and purification principles, Purification and characterization of bioactive molecules from natural sources 1.4.Rational Drug Design – Principle (Structure activity relationship) and Tools (applications of High Through Put Screening, Combinatorial synthesis, Pharmacogenomics) 	
	Clinical development	
2	2.1.Preclinical development: Toxicity testing – acute, sub-acute and chronic	12 L
	toxicity	
	2.2. Clinical development: Clinical trials-(Aims, Objectives, Conduct): I, II, III	
	and IV	

 $_{Page}19$

	2.3.Drug development: ADME and ADR	
	2.4.Role of FDA in drugdevelopment (INDA, NDA)	
	Basic Pharmaceutical concepts	
3	3.1.Quality- Definition and application	12 L
	3.2. QC, QA and regulatory factors	
	3.3. ISO- principles	
	3.4. Sanitary practices in drugs and cosmetic manufacturing	
4	Quality Assurance and Validation in Pharmaceutical Industry	
	4.1.GMP and Good GLP in pharmaceutical Industry	12 L
	4.2. Quality assurance and quality management -ISO, WHO and US	
	certification.	
	4.3. Regulatory authorities and its role Pharmacopeia (IP, UK, US), Animal	
	ethics committee (CPCSEA).	
	4.4.Delivery systems – formulations, targeted drug delivery, Sustained release	
	drugs Drug distribution in body, bio-availability and pharmacokinetic	
	studies	
	Development of antimicrobial agents	
5	5.1.Screening and development strategies for new antimicrobial agents and	12 L
	5.2. Mode of action of antimicrobial agents	
	5.3.Bioassay of antibacterial agents in liquid media and in agar media using	
	standard guidelines-e.g. (NCCLS)/(CLSI)	
	5.4.Laboratory methods to assess activity of antimicrobial combinations	
	(antagonism, synergism and additive effect)	
	Total	60

Course	Course Outcome			
Students should able to				
CO1	Student will get adequate attention for study of pharmaceutical science in this academic program.			
CO2	Student will develop requisite knowledge, technical and scientific skills for appropriate formulation of therapeutic drugs to address the needs of industry.			
CO3	Student will acquire knowledge on preparatory pharmacy and professional way of preparing various cosmetic products.			
CO4	Student will be aware of importance and significance of research in advancing clinical studies.			
CO5	Student will understand the regulations and ethics and its appropriate application.			

	Resources
Recommended	1. Hillisch A and Hilgenfeld R (2009) Modern Methods of drug discovery.
Books	Springer International Edition.
	2. Philip A, Taylor and Francis (2006) Cosmetic Microbiology practical
	approach.2nd Ed.
	3. Kokate C. K., Purohit A. P., Gokhale A. B. (2000) Pharmacology, 4th Ed.,
	Nirali Prakashan.
	4. Walsh Gary, (2003), Biopharmaceuticals Biochemistry and Biotechnology,

	2nd Ed., John Wiley & Sons Ltd, England 26. Vyas S. P and Dixit V. R.
	(2002), Pharmaceutical Biotechnology, CBS Publishers and Distributors,
	New Delhi
	5. Chatwal G. P. (2003) Biopharmasceutics and Pharmacokinetics, Himalaya
	Publishing House, Mumbai.
	6. Chorghade Mukund S., (2006), Drug discovery and development Volume I:
	Drug discovery, Wiley-Interscience, John Wiley and Sons Inc. USA.
	1. Denyer S p, Hodges N A and Gorman S P (2005) Hugo and Russell's
	Pharmaceutical Microbiology. Blackwell Publishing.
Reference	2. Sharp John (2000) Quality in the manufacture of medicines and other
	healthcare products. Pharmaceutical Press.
Books	•
	3. Altreuter D., and D S. Clark, (1999), Combinatorial Biocatalysis: Taking the
	Lead from Nature, Curr. Opin. Biotechnol. 10, 130.
	4. Dale Maureen M, John C. Foreman and Tai-Pang D. Fan, (1004), Text book
	of Immunopathology, 3rd Ed., Blackwell Scientific Publication, London
	5. Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H. and Waring M. J.,
	(1972), The molecular basis of antibiotic action, John Wiley and Sons,
	London
	6. Goldstein A., Aronow L., and Kalman S. M. (1969) Principles of Drug
	Action, The Basis of Pharmacology, Harper international edition New York.
	7. Lorian.V., (1986), Antibiotics in laboratory medicine, 2nd Ed, Williams &
	Wilkins Publication.
	8. Mannfred A. Holliger,(2008), Introduction to pharmacology, 3rd Ed., CRC
	Press 38
	9. National Committee for Clinical Laboratory Standards (now Clinical and
	Laboratory Standards Institute, CLSI). Performance standards for
	antimicrobial susceptibility testing; 12th information supplement (M100-S1).
	Villanova, PA; NCCLS: 2002
	10. Osol Arther (1975) Remington's Pharmaceutical Sciences, 15th Ed., Mack
	Pub. Co., Pennsylvania.

Year: First Year

Course: Quantitative Biology and Validation/Qualification of equipments and processes

Semester: II Course Code:

	Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA)					End Semester Examination		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	ax. 7	lime	e, Er	nd Semest	ter Exan	n (Theor	y) - 3Hrs	5.			

Prerequisite• Introduction and basic concepts of biostatistics

Objec	Objectives				
1	To inculcate statistical techniques to study living organisms.				
2	To ensure that the students can analyze and measure the bio-statistical challenges.				
3	Toacquire knowledge and underlying principles of complex biological behavior in terms of physical and mathematical models.				
4	To understand the central theme of validation and qualification of processes and equipment.				
5	To orient students towards the importance of biostatistics tools in biological research.				

Unit Number	Details			
	Introduction to Statistics			
1	1.1.Measures of central tendency – mean, mode, median and their properties	12 L		
	1.2.Measures of dispersion – variance, standard deviation, coefficient of			
	variance 1.3.Symmetry and skewness, measures of skewness, kurtosis			
	1.4.Sampling and sampling distributions – concept of sample and population			
	Correlation and regression			
2	2.1. Concept of correlation, positive correlation, negative correlation	12 L		
	2.2.Graphical method of studying types and correlation – Scatter diagram, Karl-			
	Pearson's coefficient of correlation, Spearman's rank correlation coefficient			
	2.3. Regression – Equations of regression line using least square			
	method, Regression estimate and its standard error			
	2.4. Probability theory and testing			
	Analysis of variance			
3	3.1. Analysis of variance table (ANOVA)	12 L		
	3.2. Standard error			

Page Z

	3.3. Critical difference for pairs of treatments	
	3.4. Tukey's test for pair wise comparison of treatments	
	Modeling in Biology	
4	4.1. Population models: Exponential, logistic and chemostat models	12 L
	4.2. Models in population genetics, models based on Hardy-Weinberg equation	
	4.3. Introduction to the concept of stochastic models and epidemiological model	
	4.4. Concept and applications of databases and internet	
	Validation and Qualification of process and Equipments	
5	5.1. Stages of qualification: Process Design, Process Qualification Continued	12 L
	Process Verification	
	5.2. Types of Process Validation: Prospective Validation, Retrospective	
	Validation, Concurrent Validation, Revalidation.	
	5.3 Validation Protocol: - Qualification Life Cycle, Change control	
	5.4. Elements Of equipments Validation: Design Qualification (DQ),	
	Installation Qualification (IQ), Operational Qualification (OQ),	
	Performance Qualification (PQ)	
	Total	60

Course	Outcome					
Student	Students should able to					
CO1	Student will get adequate attention for study of Quantitative Biology and Qualification					
	in this ac	cademic program.				
CO2	Student	will develop an understanding of the central concepts of modern statistical				
	theory an	nd their probabilistic foundation.				
CO3		will efficiently learn to participate in data coordination and management, analysis and reporting of study results in the field of Biology.				
CO4		will acquire knowledge of appropriate selection of method and its interpretation				
	for mode	el designing.				
CO5		will understand standard validation methodology and participate in efficient on and qualification of processes and Equipments.				
Resourc	es					
Recom Books	nended	 Cochran W.G. – Sampling Techniques, Wiley eastern Ltd, New Delhi. 3. Feller W. – Introduction to probability theory and its applications, Asia Publishing House, Mumbai. Statistical Methods – Snedecor G.W. and Cochran W.G. Affiliated East- West Press Pvt. Ltd.1989 Irfan Ali Khan and Atiya Khanum, Fundamentals of Biostatistics. 2nd Ed. Ukaaz Publications, Hydrabad. Haefner James W. (1996) Modeling Biological Systems : Principles and 				
		 Applications, Kluwer Academic Publications Virmani T and Pathak K. Validation: An Essentiality in the Pharmacy. Pharminfo.net. 5:22-24 (2007). Dashora K, Singh D and Saraf S. Validation - the Essential Quality Assurance Tool for Pharma Industries. pharminfo.net. 3: 45-47 (2005). Lingnau J. Optimization and Validation of Manufacturing Processes. Drug Dev. Ind. Pharm. 15: 1029-1046 (1989). 				

 ${}^{\rm Page}23$

1. Goon, Gupta and Dasgupta – Fundamentals of statistics, World Press,
Kolkata.
2. Gupta S.P Statistical methods, Sultanchand & Sons.
3. Lindgren B.W Statistical Theory, Macmillan Publishing Co. Inc.
4. Montgomery D.C. – Design and analysis of experiments, John Wiley &
Sons.
5. Mood A.M., Graybill F. and Bose D.C Introduction to the theory of
statistics, McGraw Hill Publishing Co.
6. Murthy M.N. – Sampling methods, Indian Statistical Institute, Kolkata.
7. Wayne Daniel (2007) Biostatistics A foundation for Analysis in the health
sciences, Edition 7, Wiley-India edition.
8. Agalloco J. Validation: an unconventional review and reinvention. PDA J.
Pharm. Sci. Tech. 49:175–179 (1995).
9. Aleem H, Zhao Y, Lord S, McCarthy T and Sharratt P. Pharmaceutical
process validation: an overview. J. Proc. Mech. Eng. 217: 141-151 (2003).
10. Chitlange S. S, Pawar A. S, Pawar H. I, Bhujbal S. S. and Kulkarni A. A.
Validation. pharmainfo.net/reviews/validation. 4: 318-320 (2006).
11. Nash R. A. and Wachter A. H. Pharmaceutical Process Validation an
International Third Edition. Revised and Expanded, Marcel Dekkar, Inc.,
New York, 2003; 129:760-792.

Year: First Year Course: Medical Microbiology and Virology

Semester: II Course Code:

	Teaching Scheme (Hrs/Week)		Continu	ious Inte	ernal Ass	sessment	End Semester Examination		Total		
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory Lab		
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite	• Introduction and basic concepts pathogens like bacteria, fungi, protozoa
rrerequisite	and viruses

Objec	tives
1	To impart the knowledge of microorganisms of medical importance.
2	To familiarize students with various etiological agents responsible for global infections.
3	To understand fundamentals of virulence processes of pathogenic microorganisms
4	To develop students ability to solve the challenges and expand the scope in research related to clinical microbiology.
5	To develop research driven approach for treatment and prevention of infectious diseases

Unit Number	Details	Hours
1	Basics in Medical microbiology: Infectious diseases overview, Medically important microbes.	10 L
I	Microbial diseases - sources, route of transmission.	10 L
	Pathogenesis - adhesion, invasion, host cell damage, release of pathogens.	
	Microbial virulence and virulence factors - Signs and symptoms of microbial diseases. Treatment, Prevention and control of microbial infections. Concept of Multidrug resistant bacteria.	
2	Diagnosis of microbial diseases: Collection, transport and preliminary processing of clinical pathogens. Clinical, microbiological, immunological and molecular diagnosis of microbial diseases. Modern methods of microbial diagnosis.	6L
3	Bacteriology : Characteristics, classification, pathogenesis, pathology, diagnosis, treatment, prevention and control of diseases caused by bacteria of clinical importance -	12 L

Page Z

	Staphylococci, Streptococci, Bacillus, Clostridium, Corynebacterium, Escherichia, Salmonella, Shigella, Klebsiella, Proteus, Vibrio, Pseudomonas, Mycobacteria, Spirochaetes, Rickettsia.	
4	 Mycology and Parasitology: 1. Mycology - Human mycotic infections caused by Dermatophytes, Histoplasma, Cryptococcus, Candida, opportunistic mycoses. Mycotoxins. 2. Parasitology - Medical importance of Entamoeba, Giardia, Plasmodium, Taenia, Ascaris, Wucherhiria. Laboratory techniques in parasitology 	12 L
5	 Virology: 1. Classification and Morphology of Viruses Virus classification schemes of ICTV / ICNV. Morphology and ultra-structure of viruses. Virus related agents, viroids and prions. 2. Viral Multiplication 3. Cultivation and assay of viruses Cultivation of viruses using embryonated eggs, experimental animals and cell cultures (Cell-lines, cell strains and transgenic systems). Assay of viruses – Physical and Chemical methods (Electron Microscopy and Protein and Nucleic acids studies.), Infectivity Assays (Plaque and end-point) Genetic analysis of viruses by classical genetic methods. 	12
6	Pathogenesis of Viruses and their control:Host and virus factors involved in pathogenesis, patterns of infection,pathogenesis of animal viruses, Adenovirus, Herpes virus, Hepatitis virus,Picorna virus, Poxvirus and Orthomyxovirus,pathogenesis of plant [TMV] and insect viruses [NPV]. Host celltransformation by viruses and oncogenesis of DNA and RNA viruses.Control of Viruses:Control of viral infections through vaccines, interferons and chemotherapeuticagents.Structure, genomic organization, pathogenesis and control of Human-	8 L
	immunodeficiency virus. Total	60

Course	Outcome			
Studen	Students should able to			
CO1	Student will get adequate knowledge of the etiological agents of medical importance			
	such as bacteria, viruses, parasites etc.			
CO2	Student will develop an understanding of the role of microbes as a potential pathogen			
	and progression of disease.			
CO3	Students will efficiently learn the process of detection, treatment and controlof			
	pathogenic microbes			
CO4	Student will acquire comprehensive theoretical knowledge of medical microbiology and			
	virology which includes mode of transmission, disease causation and diagnosis of			
	pathogen of major significance to public health.			
CO5	Student will develop an approach to analyze and solve the clinical problems.			

 ${}^{\rm Page}26$

Resources	
Recommended	1. Textbook of Medical Microbiology. C.P. Baveja. 4th edition
Books	2. Davis and Dulbacco Medical Microbiology Gibbs. Bernard D, Renato
	Dulbecco & others. Davis. 3rd edition
	3. Textbook of Medical Laboratory Technology. Praful B. Godkar, Darshan
	P. Godkar. 2014
	4. Bailey and scott's diagnostic microbiology. Patricia M. Tille. 2014
	5. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. Gary
	W. Procop (Author), Elmer W. Koneman. 2006
	6. General virology. Luria S. E. et.al.1978
	7. Field's Virology, 5th Ed. Lippincott Williams & Wilkins. Martin, Bernard
	Roizman, Stephen E. Straus.2007
	8. A Practical Guide to Clinical Virology. 2ndEd. Edited by, John Wiley &
	Sons, Ltd. Haaheim L. R., J. R. Pattison and R. J. Whitley.2002
	9. Principles of Virology: Molecular Biology, Pathogenesis, and Control.
	Flint S. J., V. R. Racaniello, L. W. Enquist, V. R.Rancaniello, A. M. Skalka.
	2003.
	10. Basic Virology, Blackwell Publishing. Edward K. Wagner, Martinez J.
	Hewlett. 2004
	Virology:
Reference Books	1. Medical Virology 10 Th Edition by Morag C and Tim bury M C 1994.
	Churchil
	Livingstone, London.
	2. Introduction to Modern Virology 4th Edition by Dimmock N J, Primrose S.
	B. 1994.
	Blackwell Scientific Publications. Oxford.
	3. Virology 3 rd Edition by Conrat H.F., Kimball P.C. and Levy J.A. 1994.
	Prentice Hall, Englewood Cliff, New Jersey.
	4. Molecular Biology, Pathogenesis and Control by S.J. Flint and others.
	ASM Press,
	Washington, D.C.
	5. Applied Virology. 1984. Edited by EdonardKurstak. Academic Press Inc.
	MedicalMicrobiology
	1. Unsworth K. E. and David W. Holden, (2000), Identification and analysis
	of bacterial virulence genes in vivo, Phil. Trans. R. Soc. London B. 355, 613-
	622
	2. Woods D. E., (2002), The use of animal infection models to study the
	pathogenesis
	of melioidosis and glanders, Trends Microbiol, 10(11):483-5
	3. Eduardo A. G.roisman and Howard Ochman, (1994), How to become a
	pathogen,
	Trends in Microbiology, 2(8):289-294
	4. Carpenter Philip L., (1975), Saunders International Edition - Immunology
	and
	Serology, W. B. Saunders and Co., London
	5. Schlessinger David, Editor, Mechanism of Microbial Virulence, in
	Microbiology –

 ${}^{\rm Page}27$

1979, American Society for Microbiology, Washington D. C., 79-230
6. Schlessinger David, Editor, Biochemical Genetics of Pathogenecity, in
Microbiology – 1979, American Society for Microbiology, Washington D. C.,
79-
230
7. Mark J. Pallen1 & Brendan W. Wren, (2007), Bacterial pathogenomics,
Nature
Rev. 449 18: 835-842
8. Hughes Eric A. and Jorge E. Galan, (2002), Immune Response to
Salmonella:
Location, Location?, Immunity, 16: 325-328
9. Chaechter M. Medoff G. and Eisenstein BC. (1993) Mechanism of
Microbial Diseases 2nd edition. Williams and Wilkins, Baltimore.
10. Collee, JG. Duguid JP, Fraser AG, Marimon BP. (1989) Mackie and Mc
Cartney Practical Medical Microbiology, 13th Edition. Churchill Livingstone.
11. David Greenwood, Richard CD, Slack, John Forrest Peutherer. (1992)
Medical Microbiology. 14th edition. ELBS with Churchill Livingstone.
12. Topley & Wilsons's. (1990) Principles of Bacteriology, Virology and
Immunity, VIII edition, Vol. III Bacterial Diseases, Edward Arnold, London.

Elective subject (DE1)

Year: First Year

Semester: II

Course: Research methodology, IPR, Environmental Protection Course Code: Act.

	Feac Sch Irs/V	eme		Continuous Internal Assessment (CIA)				End Semester Examination		Total	
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite	3. Introduction and basic concepts of research, environmental awareness

Object	ives							
1	To develop understanding of the basic framework of research process.							
2	To develop an understanding of various research designs and techniques.							
3	To identify various sources of information for literature review and data collection.							
4	To introduce fundamental aspects of Intellectual property Rights to students which is							
	needed in development and management of innovative projects in bio-industries. To							
	develop an understanding of the ethical dimensions of conducting applied research.							
5	To gain adequate knowledge on the components of scholarly writing and evaluate its							
	quality.							

Unit Number	Details						
	Research Methodology						
1	Introduction	12 L					
	Meaning of Research						
	Objectives of Research						
	Types of Research						
	Research Methodology: Philosophical Perspective						
	Defining the Research Problem						
	Data Collection Method						
	Sampling Fundamentals						
	Role of Computer in Research						
	Structure of Questionnaire						
	Ethical consideration in research						
2	Intellectual Property Rights						

Page 29

ANTES

	Introduction to IPR	12 I
	History of IPR in India	
	Overview of Laws related to Intellectual Property Rights in India	
	Types of Intellectual property – Patents, Trademarks, Copyrights and related	
	rights; Traditional vs. Novelty;	
	Importance of intellectual property rights in biology and environmental sciences; GATT and WTO and IPR provisions under TRIPS; Madrid agreement; Hague agreement; WIPO treaties; Budapest treaty; Indian Patent Act (1970)	
	Patents:	
3	Definition, patentable and non-patentable inventions; types of patent application – Ordinary, Conventional, PCT, Divisional, and Patent of addition;	12
	Concept of Prior Art; Patent databases, Patent infringement – meaning, scope, litigation	
	Patenting of biological materials, international co operation, obligations with	
	patent applications, implication of patenting, current issues, hybridoma	
	technology etc. Patenting of higher plants and animals, transgenic organisms	
	and isolated genes, patenting of genes and DNA sequences, plant breeder's	
	right and farmers rights.	
4	Introduction to bioethics:	12]
4	Definition, History of bioethics. Ethics in Bio-medical research. Guidelines-ICMR, Institutional Ethics Committees, Institutional Review	141
	Board, Ethics-SOPs	
	Ethical issues based on methodology of clinical Research. The ethics of	
	clinical research in developing countries.	
	Introduction to National Environmental Laws:	
5	Environmental Law and the Indian Constitution	12]
	Other Laws and Environment (IPC, Cr.PC, Torts)	
	Environment Protection Act, 1986	
	Sustainable Development and Environment- Nagoya protocol related to microbes	
	Introduction to Environmental Impact Assessment	
	Total	60

Course	Course Outcome							
Students should able to								
CO1	Student will get adequate attention for study of Research methodology							
CO2	Student will acquire knowledge and understanding of data analysis and interpretation in							
	relation to the research process							
CO3	Students will develop an approach to carry out scientific research							
CO4	Learner will understand the fundamentals and application of Intellectual property rights							

 ${}^{\rm Page}30$

	related to biological sciences								
CO5	It will help	to stimulate	environmental	consciousness	for	sustainability	and		
	environmental protection.								

Resources								
Recommended	1. Research Methodology : Methods And Techniques (Multi Colour Edition)							
Books	by C.R. Kothari and Gaurav Garg							
	2. Ponkhshe S. (1988) Management of Intellectual Property, Bhate and							
	Ponkhshe Prakasham, Pune							
	3. Economics and Environment – Good Steie							
	4. Environmental Planning, Policies & Programmes in India – K.D. Saxena							
	5. Land – Use and Environment – S.M. Mujtava							
	1.Ratledge C and Kristiansen B eds. (2001) Basic Biotechnology 2nd Ed.							
Reference Books	Cambridge							
	Univ. Press. Cambridge							
	2. Ecology And Environment Paperback – 2011by P D Sharma							
	3. Environmental Impact Assessment – John Glasson							
	4. Methods of Environmental Impact Assessment – Morris & Therivel							
	5. Environmental Impact Assessment – L.W. Canter							
	6. Chemical Principles of Environmental Pollution – Alloway & Ayers							
	7. Industrial Environment – Assessment and Strategy – S.K. Aggarwal							
	8. Introduction to Environmental Engineering and Science – Gilbert Masters							
	9. Handbook of Environmental Assessment, (VolI & II) – Judith Petts							
	10. Environmental Administration and Law- Paras Diwan.							

 $_{\text{Page}}31$

Elective subject (DE1)

Year: First Year

Semester: II

Course: Principles of Genetics

Course Code:

	Sch	eaching Scheme Continuous Internal Assessment (CIA) rs/Week)				End Semester Examination		Total			
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
4	0	-	4	15	20	15		-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite	1. Introduction and basic concepts of Genes, nucleic acid, chromosomes etc.
I I CI CYUISICC	1. Indicated on and busic concepts of Genes, nucleic acid, en oniosonies etc.

Objectives						
1	To impart the knowledge of genetic and its advances.					
2	To increase the understanding of all biological phenomena and related concepts.					
3	To understand functions of classical genetics including Mendelian laws and their					
	significance in genetic diseases.					
4	To introduce students to the genetic related problems					
5	To create the base for advanced genetics					

Unit Number	Details						
1							
	genetic concepts- Pre-formation, Epigenesis, Pangenesis, Inheritance of						
	acquired characters, Germplasm theory. • Heredity and Environment;						
	Genotype and Phenotype; Heredity and Variation. • Clones, Purelines and						
	Inbred lines. • Norms of reaction and Phenocopies.						
2	Mendelian Genetics						
	a. Law of segregation: • Monohybrid cross, back cross and test cross.	12 L					
	• Dominance and Recessive ness, • Co-dominance and Incomplete						
	dominance. • Genetic problems related						
	b. Law of Independent Assortment: • Dihybrid cross in Pea plant and						
	Drosophila, • Back cross and test cross. • Genetic problems related.						
3	Multiple alleles: • Definition, Eye color in Drosophila, Blood groups and Rh						
	factor in Human. • Genetic diseases: eg. Autosomal, X linked and Y linked.	12 L					
	Eugenics, Genetic counselling						
	Gene interactions: • Deviations from Mendelism:						

Page3₄

ANTE

4	➢ Inter allelic-	12 L
	• Complementry gene interaction (9:7) Ex. Lathyrus odoratus	
	• Supplementry gene interaction (9:3:4) Ex. Grain color in Maize.	
	• Epistasis: - Dominant –Ex. Fruit color in Cucurbita pepo.	
	• Epistasis:- Recessive –Ex. Coat color in Mice.	
	➤ Inter allelic Non Epistatic: Ex. Comb pattern in Fowl.	
	Sex Linkage: Meiotic behavior of chromosome and non-disjunction. •	
5	Bridges theories of non-disjunction. • Sex linkage in Drosophila.	12 L
	Sex determination: . • Chromosomal theory of sex determination-XX-XY,	
	XX-XO, ZZ-ZW; Genic balance theory of Bridges, Y chromosome in sex	
	determination in <i>Melandrium</i> . • Environment and sex determination. •	
	Hormonal control of sex determination (free martin). • Gynandromorphs	
	/ Intersexes, Super sexes in Drosophila. • Sex differentiation and Dosage	
	compensation (Drosophila and Man).	
	Total	60

Course	Course Outcome				
Students should able to					
CO1	Student will be able to know the fundamentals of life.				
CO2	Student will acquire knowledge about the organizational and functional aspects of living cell and organelles				
CO3	Students will be able to learn the classical genetics and transmission of genetic traits from generation to generation				
CO4	Learner will be able to develop understanding to create the base for advanced genetics				
CO5	It will help to stimulate the innovative ideas of research for curing genetic related problem like genetic diseases				

Resources	
Recommended	1. Principle of Genetics by Robert H. Tamarin, Tata-McGraw Hill,
Books	Seventh Edition (2002).
	2. Genetics, Princilpes and Analysis by Daniel Hart and E.W. Jones. 4th
	Edition 1998; Jones and Bartlett Publication.
	3. Genetics by M.W. Strickbergar. McMillan Publication, New York.
	1. Essentials of Human Genetics by S.M. Bhatnagar etal (1999) IV
Reference Books	edition. Orient Longman.
	2. Human Genetics : Concepts and Applications by Lewis R (2001)
	McGrawHi; Boston.
	3. Genetics in Medicine by M.W. Thompson et al, 5 Edition, W.B.
	Sounders Company, London.

 ${}^{\rm Page}33$

Year: First Year Semester: II **Course:** Pharmaceutical science ; Quantitative Biology and **Course Code:** Validation/ Qualification of equipment and processes Laboratory III Teaching **End Semester Continuous Internal Assessment (CIA)** Scheme Total Examination (Hrs/Week) CIA-CIA-Т CIA-1 L Р С Lab Theory Lab 2 3

0 0 2 50 Max. Time, End Semester Exam (Theory) - 2Hrs.

_

_

_

4

0	Objectives					
1	To understand and abide to the standard regulatory protocol for microbiological analysis of					
	pharmaceutical products.					
2	To acquire hands on cosmetic product formulation, preservation and shelf life study.					
3	To enhance the application skills of quantitative biology.					

_

50

100

Sr. No.	Description
1	Antimicrobial effectiveness testing (as per FDA)
2	Microbial examination of non sterile products
3	Sterility testing of pharmaceutical product
4	Antibiotic potency assay
5	Preparation of cosmetic product and its shelf life study.
6	Efficacy testing of preservative
7	Bioburden Estimation for Medical Device
8	Problems to study normal distribution.
9	Application of Students t-test for biological problems.
10	Performance of chi-square test.

Page34

ANTES

11	Conductance of ANOVA test.
12	Application of internet for bio-statistical analysis.
13	Validation and calibration of autoclave
14	Validation and calibration of Laminar air flow.
15	Validation and calibration of Incubator
16	Pharmaceutical industrial visit

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on attendance, good laboratory practice (GPL), timely completion, journal/record book, oral/viva, respectively. It should be assessed by course teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Notes

- 1 The regular attendance of the students during semester for practical course will be monitored and marks will be given accordingly (10 Marks).
- 2 Good Laboratory Practices (10 Marks)
- 3 Timely Completion (10 Marks)
- 4 Journal / Record Book (10 Marks)
- 5 Oral / Viva (10 Marks)

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners appointed as internal and external examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Notes				
1	One experiment from the regular practical syllabus will be conducted (40 Marks).			
2	Oral/Viva-voce (10 Marks).			

Year: First Year

Semester: II

Course: Virology and Medical Microbiology and Research methodology, IPR, Environmental Protection Act. Laboratory IV

Course Code:

Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA)					End Semester Examination		Total		
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3		Lab	Theory	Lab	
0	0	4	2	-	-	-		50	-	50	100
Ma	Max. Time, End Semester Exam (Theory) - 2Hrs.							•			

0	Objectives					
1	To understand the process involved in isolation and identification of pathogenic agents					
2	To explore the various techniques in medical microbiology					
3	To develop hands on skill for handling and processing of pathogenic microorganisms					
4	To develop scientific writing and communication skill of students					

Sr. No.	Description
1	Egg inoculation and cultivation of animal virus in embryonated egg.
2	Isolation and identification of pathogenic microorganisms from clinical specimens (urine, pus, sputum, stool, blood)
3	Antibiotic susceptibility testing of pathogenic bacteria
4	Germ tube test for detection of Candida spp.
5	Slide culture method and staining of fungal strains
6	Acid fast staining
7	Study of phagocytosis using bacterial/yeast cells.

 $_{\text{Page}}36$

8	Microscopic observation of intestinal parasitic agents
9	Visit to Industry/ research organization/ Hospital/ pathology lab
10	Scientific communication:
	Title and abstract for a given text.
11	Choosing and indexing key words from a given paper
12	Manuscript writing for research article
13	Writing a newspaper report / popular article of a latest research paper.
14	Preparation of display material (such as scientific posters)
15	Writing a pedagogical (academic) article on a scientific theme
16	To study format for patent filing

Term Work:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on Attendance, Good Laboratory Practice (GLP), Timely Completion, Journal/Record book and Oral. It should be assessed by subject teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

N	0	te	S

- 1 The regular attendance of the students during semester for practical course will be monitored and marks will be given accordingly (10 Marks).
- 2 Good Laboratory Practices (10 Marks)
- 3 Timely Completion (10 Marks)
- 4 Journal / Record Book (10 Marks)
- 5 Oral / Viva (10 Marks)

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners appointed as internal and external examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Notes

1	One experiment from the regular practical syllabus will be conducted (40 Marks).
---	--

ANTE

2 Oral/Viva-voce (10 Marks).